These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Pugazhendhi A; Prabakar D; Jacob JM; Karuppusamy I; Saratale RG Microb Pathog; 2018 Jan; 114():41-45. PubMed ID: 29146498 [TBL] [Abstract][Full Text] [Related]
23. Biogenic synthesis of silver nanoparticles using Gliocladium deliquescens and their application as household sponge disinfectant. Fathy RM; Salem MSE; Mahfouz AY Biol Trace Elem Res; 2020 Aug; 196(2):662-678. PubMed ID: 31808109 [TBL] [Abstract][Full Text] [Related]
24. The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Das MR; Sarma RK; Borah SCh; Kumari R; Saikia R; Deshmukh AB; Shelke MV; Sengupta P; Szunerits S; Boukherroub R Colloids Surf B Biointerfaces; 2013 May; 105():128-36. PubMed ID: 23384688 [TBL] [Abstract][Full Text] [Related]
25. Innovative biosynthesis of silver nanoparticles using yeast glucan nanopolymer and their potentiality as antibacterial composite. Elnagar SE; Tayel AA; Elguindy NM; Al-Saggaf MS; Moussa SH J Basic Microbiol; 2021 Aug; 61(8):677-685. PubMed ID: 34146360 [TBL] [Abstract][Full Text] [Related]
26. Effect of silver nanoparticles conjugated to thiosemicarbazide on biofilm formation and expression of intercellular adhesion molecule genes, icaAD, in Staphylococcus aureus. Montazeri A; Salehzadeh A; Zamani H Folia Microbiol (Praha); 2020 Feb; 65(1):153-160. PubMed ID: 31114932 [TBL] [Abstract][Full Text] [Related]
27. Antibacterial activity of silver nanoparticles synthesized from serine. Jayaprakash N; Judith Vijaya J; John Kennedy L; Priadharsini K; Palani P Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():316-322. PubMed ID: 25686955 [TBL] [Abstract][Full Text] [Related]
28. Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film. Ghosh S; Kaushik R; Nagalakshmi K; Hoti SL; Menezes GA; Harish BN; Vasan HN Carbohydr Res; 2010 Oct; 345(15):2220-7. PubMed ID: 20800222 [TBL] [Abstract][Full Text] [Related]
29. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Feroze N; Arshad B; Younas M; Afridi MI; Saqib S; Ayaz A Microsc Res Tech; 2020 Jan; 83(1):72-80. PubMed ID: 31617656 [TBL] [Abstract][Full Text] [Related]
30. Graphene oxide-silver nanocomposite as a promising biocidal agent against methicillin-resistant Staphylococcus aureus. de Moraes AC; Lima BA; de Faria AF; Brocchi M; Alves OL Int J Nanomedicine; 2015; 10():6847-61. PubMed ID: 26586946 [TBL] [Abstract][Full Text] [Related]
31. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity. Kaur A; Preet S; Kumar V; Kumar R; Kumar R Colloids Surf B Biointerfaces; 2019 Apr; 176():62-69. PubMed ID: 30594704 [TBL] [Abstract][Full Text] [Related]
32. One pot preparation of silver nanoparticles decorated TiO2 mesoporous microspheres with enhanced antibacterial activity. Chen Y; Deng Y; Pu Y; Tang B; Su Y; Tang J Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():27-32. PubMed ID: 27157724 [TBL] [Abstract][Full Text] [Related]
33. Hybrid nanocellulose decorated with silver nanoparticles as reinforcing filler with antibacterial properties. Errokh A; Magnin A; Putaux JL; Boufi S Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110044. PubMed ID: 31546437 [TBL] [Abstract][Full Text] [Related]
35. Ag@Ag8W4O16 nanoroasted rice beads with photocatalytic, antibacterial and anticancer activity. Selvamani M; Krishnamoorthy G; Ramadoss M; Sivakumar PK; Settu M; Ranganathan S; Vengidusamy N Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():109-118. PubMed ID: 26706513 [TBL] [Abstract][Full Text] [Related]
36. Synthesis of novel cellulose- based antibacterial composites of Ag nanoparticles@ metal-organic frameworks@ carboxymethylated fibers. Duan C; Meng J; Wang X; Meng X; Sun X; Xu Y; Zhao W; Ni Y Carbohydr Polym; 2018 Aug; 193():82-88. PubMed ID: 29773400 [TBL] [Abstract][Full Text] [Related]
38. Synthesis and characterization of silver nanoparticles using Cynodon dactylon leaves and assessment of their antibacterial activity. Sahu N; Soni D; Chandrashekhar B; Sarangi BK; Satpute D; Pandey RA Bioprocess Biosyst Eng; 2013 Jul; 36(7):999-1004. PubMed ID: 23111848 [TBL] [Abstract][Full Text] [Related]
39. Impact of protecting ligands on surface structure and antibacterial activity of silver nanoparticles. Padmos JD; Boudreau RT; Weaver DF; Zhang P Langmuir; 2015 Mar; 31(12):3745-52. PubMed ID: 25773131 [TBL] [Abstract][Full Text] [Related]
40. Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications. Rafique M; Sadaf I; Tahir MB; Rafique MS; Nabi G; Iqbal T; Sughra K Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1313-1324. PubMed ID: 30889666 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]