These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 31597214)
1. Molecular signatures of selection associated with host plant differences in Pieris butterflies. Okamura Y; Sato A; Tsuzuki N; Murakami M; Heidel-Fischer H; Vogel H Mol Ecol; 2019 Nov; 28(22):4958-4970. PubMed ID: 31597214 [TBL] [Abstract][Full Text] [Related]
2. Interspecific Differences in the Larval Performance of Pieris Butterflies (Lepidoptera: Pieridae) Are Associated with Differences in the Glucosinolate Profiles of Host Plants. Okamura Y; Tsuzuki N; Kuroda S; Sato A; Sawada Y; Hirai MY; Murakami M J Insect Sci; 2019 May; 19(3):. PubMed ID: 31039584 [TBL] [Abstract][Full Text] [Related]
3. Microevolution of Pieris butterfly genes involved in host plant adaptation along a host plant community cline. Okamura Y; Sato A; Kawaguchi L; Nagano AJ; Murakami M; Vogel H; Kroymann J Mol Ecol; 2022 Jun; 31(11):3083-3097. PubMed ID: 35364616 [TBL] [Abstract][Full Text] [Related]
4. Differential regulation of host plant adaptive genes in Pieris butterflies exposed to a range of glucosinolate profiles in their host plants. Okamura Y; Sato A; Tsuzuki N; Sawada Y; Hirai MY; Heidel-Fischer H; Reichelt M; Murakami M; Vogel H Sci Rep; 2019 May; 9(1):7256. PubMed ID: 31076616 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary origins of a novel host plant detoxification gene in butterflies. Fischer HM; Wheat CW; Heckel DG; Vogel H Mol Biol Evol; 2008 May; 25(5):809-20. PubMed ID: 18296701 [TBL] [Abstract][Full Text] [Related]
6. De Novo Genome Assembly and Annotation of Leptosia nina Provide New Insights into the Evolutionary Dynamics of Genes Involved in Host-Plant Adaptation of Pierinae Butterflies. Okamura Y; Vogel H Genome Biol Evol; 2024 May; 16(5):. PubMed ID: 38778773 [TBL] [Abstract][Full Text] [Related]
7. Microevolutionary dynamics of a macroevolutionary key innovation in a Lepidopteran herbivore. Heidel-Fischer HM; Vogel H; Heckel DG; Wheat CW BMC Evol Biol; 2010 Feb; 10():60. PubMed ID: 20181249 [TBL] [Abstract][Full Text] [Related]
8. The butterfly plant arms-race escalated by gene and genome duplications. Edger PP; Heidel-Fischer HM; Bekaert M; Rota J; Glöckner G; Platts AE; Heckel DG; Der JP; Wafula EK; Tang M; Hofberger JA; Smithson A; Hall JC; Blanchette M; Bureau TE; Wright SI; dePamphilis CW; Eric Schranz M; Barker MS; Conant GC; Wahlberg N; Vogel H; Pires JC; Wheat CW Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8362-6. PubMed ID: 26100883 [TBL] [Abstract][Full Text] [Related]
9. Evolution of specifier proteins in glucosinolate-containing plants. Kuchernig JC; Burow M; Wittstock U BMC Evol Biol; 2012 Jul; 12():127. PubMed ID: 22839361 [TBL] [Abstract][Full Text] [Related]
10. The genetic basis of a plant-insect coevolutionary key innovation. Wheat CW; Vogel H; Wittstock U; Braby MF; Underwood D; Mitchell-Olds T Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20427-31. PubMed ID: 18077380 [TBL] [Abstract][Full Text] [Related]
11. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore. Stauber EJ; Kuczka P; van Ohlen M; Vogt B; Janowitz T; Piotrowski M; Beuerle T; Wittstock U PLoS One; 2012; 7(4):e35545. PubMed ID: 22536404 [TBL] [Abstract][Full Text] [Related]
12. Testing hypotheses of a coevolutionary key innovation reveals a complex suite of traits involved in defusing the mustard oil bomb. Okamura Y; Dort H; Reichelt M; Tunström K; Wheat CW; Vogel H Proc Natl Acad Sci U S A; 2022 Dec; 119(51):e2208447119. PubMed ID: 36508662 [TBL] [Abstract][Full Text] [Related]
13. Evolution of larval host plant associations and adaptive radiation in pierid butterflies. Braby MF; Trueman JW J Evol Biol; 2006 Sep; 19(5):1677-90. PubMed ID: 16910997 [TBL] [Abstract][Full Text] [Related]
14. Insect egg-killing: a new front on the evolutionary arms-race between brassicaceous plants and pierid butterflies. Griese E; Caarls L; Bassetti N; Mohammadin S; Verbaarschot P; Bukovinszkine'Kiss G; Poelman EH; Gols R; Schranz ME; Fatouros NE New Phytol; 2021 Apr; 230(1):341-353. PubMed ID: 33305360 [TBL] [Abstract][Full Text] [Related]
15. Consequences of 'no-choice, fixed time' reciprocal host plant switches on nutrition and gut serine protease gene expression in Pieris brassicae L. (Lepidoptera: Pieridae). Kumar P; Akhter T; Bhardwaj P; Kumar R; Bhardwaj U; Mazumdar-Leighton S PLoS One; 2021; 16(1):e0245649. PubMed ID: 33471847 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomics of monarch butterflies (Danaus plexippus) reveals that toxic host plants alter expression of detoxification genes and down-regulate a small number of immune genes. Tan WH; Acevedo T; Harris EV; Alcaide TY; Walters JR; Hunter MD; Gerardo NM; de Roode JC Mol Ecol; 2019 Nov; 28(22):4845-4863. PubMed ID: 31483077 [TBL] [Abstract][Full Text] [Related]
17. Molecular identification and characterization of rhodaneses from the insect herbivore Pieris rapae. Steiner AM; Busching C; Vogel H; Wittstock U Sci Rep; 2018 Jul; 8(1):10819. PubMed ID: 30018390 [TBL] [Abstract][Full Text] [Related]
18. Oviposition strategies in Pieridae butterflies and the role of an egg-killing plant trait therein. Peters DH; Greenberg LO; Fatouros NE Ecol Evol; 2024 Jul; 14(7):e11697. PubMed ID: 39026945 [TBL] [Abstract][Full Text] [Related]
19. Analysis of plant leaf metabolites reveals no common response to insect herbivory by Pieris rapae in three related host-plant species. Riach AC; Perera MV; Florance HV; Penfield SD; Hill JK J Exp Bot; 2015 May; 66(9):2547-56. PubMed ID: 25711707 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide association study reveals WRKY42 as a novel plant transcription factor that influences oviposition preference of Pieris butterflies. Coolen S; Van Dijen M; Van Pelt JA; Van Loon JJA; Pieterse CMJ; Van Wees SCM J Exp Bot; 2023 Mar; 74(5):1690-1704. PubMed ID: 36560910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]