These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 31597248)

  • 1. Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing.
    Torres-Mapa ML; Singh M; Simon O; Mapa JL; Machida M; Günther A; Roth B; Heinemann D; Terakawa M; Heisterkamp A
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
    Krutkramelis K; Xia B; Oakey J
    Lab Chip; 2016 Apr; 16(8):1457-65. PubMed ID: 26987384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon fabrication of hydrogel microstructures for excitation and immobilization of cells.
    Hasselmann NF; Hackmann MJ; Horn W
    Biomed Microdevices; 2017 Dec; 20(1):8. PubMed ID: 29288278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device.
    Chen M; Aluunmani R; Bolognesi G; Vladisavljević GT
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization Synthesis and Biosensing Performance of an Acrylate-Based Hydrogel as an Optical Waveguiding Sensing Film.
    Makhsin SR; Goddard NJ; Gupta R; Gardner P; Scully PJ
    Anal Chem; 2020 Nov; 92(22):14907-14914. PubMed ID: 32378876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implanted Nanosensors in Marine Organisms for Physiological Biologging: Design, Feasibility, and Species Variability.
    Lee MA; Nguyen FT; Scott K; Chan NYL; Bakh NA; Jones KK; Pham C; Garcia-Salinas P; Garcia-Parraga D; Fahlman A; Marco V; Koman VB; Oliver RJ; Hopkins LW; Rubio C; Wilson RP; Meekan MG; Duarte CM; Strano MS
    ACS Sens; 2019 Jan; 4(1):32-43. PubMed ID: 30525471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces.
    Shay T; Dickey MD; Velev OD
    Lab Chip; 2017 Feb; 17(4):710-716. PubMed ID: 28150821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems.
    Lv C; Xia H; Guan W; Sun YL; Tian ZN; Jiang T; Wang YS; Zhang YL; Chen QD; Ariga K; Yu YD; Sun HB
    Sci Rep; 2016 Jan; 6():19801. PubMed ID: 26823292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layer-by-layer fabrication of 3D hydrogel structures using open microfluidics.
    Lee UN; Day JH; Haack AJ; Bretherton RC; Lu W; DeForest CA; Theberge AB; Berthier E
    Lab Chip; 2020 Feb; 20(3):525-536. PubMed ID: 31915779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Chip Device for
    Sheth S; Stealey S; Morgan NY; Zustiak SP
    Langmuir; 2021 Oct; 37(40):11793-11803. PubMed ID: 34597052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structured Hydrogel Particles With Nanofabricated Interfaces via Controlled Oxygen Inhibition.
    Debroy D; Liu J; Li-Oakey K; Oakey J
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):253-256. PubMed ID: 30892223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crosslinker length dictates step-growth hydrogel network formation dynamics and allows rapid on-chip photoencapsulation.
    Jiang Z; Shaha R; McBride R; Jiang K; Tang M; Xu B; Goroncy AK; Frick C; Oakey J
    Biofabrication; 2020 Apr; 12(3):035006. PubMed ID: 32160605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multilayer microfluidic poly(ethylene glycol) diacrylate hydrogels.
    Cuchiara MP; West JL
    Methods Mol Biol; 2013; 949():387-401. PubMed ID: 23329455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices.
    Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D
    Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite Hydrogels With Controlled Degradation in 3D Printed Scaffolds.
    Jiang Z; Shaha R; Jiang K; McBride R; Frick C; Oakey J
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):261-264. PubMed ID: 30892230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering functional hydrogel microparticle interfaces by controlled oxygen-inhibited photopolymerization.
    Debroy D; Li-Oakey KD; Oakey J
    Colloids Surf B Biointerfaces; 2019 Aug; 180():371-375. PubMed ID: 31079030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multilayer microfluidic PEGDA hydrogels.
    Cuchiara MP; Allen AC; Chen TM; Miller JS; West JL
    Biomaterials; 2010 Jul; 31(21):5491-7. PubMed ID: 20447685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-interpenetrating network hyaluronic acid microgel delivery systems in micro-flow.
    Chen Q; Passos A; Balabani S; Chivu A; Zhao S; Azevedo HS; Butler P; Song W
    J Colloid Interface Sci; 2018 Jun; 519():174-185. PubMed ID: 29494879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel single-step fabrication technique to create heterogeneous poly(ethylene glycol) hydrogel microstructures containing multiple phenotypes of mammalian cells.
    Zguris JC; Itle LJ; Koh WG; Pishko MV
    Langmuir; 2005 Apr; 21(9):4168-74. PubMed ID: 15835990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.