BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 31597288)

  • 1. Long-Term Glucose Forecasting Using a Physiological Model and Deconvolution of the Continuous Glucose Monitoring Signal.
    Liu C; Vehí J; Avari P; Reddy M; Oliver N; Georgiou P; Herrero P
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evaluation of a recursive model identification technique for type 1 diabetes.
    Finan DA; Doyle FJ; Palerm CC; Bevier WC; Zisser HC; Jovanovic L; Seborg DE
    J Diabetes Sci Technol; 2009 Sep; 3(5):1192-202. PubMed ID: 20144436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting subcutaneous glucose concentration using a latent-variable-based statistical method for type 1 diabetes mellitus.
    Zhao C; Dassau E; Jovanovič L; Zisser HC; Doyle FJ; Seborg DE
    J Diabetes Sci Technol; 2012 May; 6(3):617-33. PubMed ID: 22768893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GluNet: A Deep Learning Framework for Accurate Glucose Forecasting.
    Li K; Liu C; Zhu T; Herrero P; Georgiou P
    IEEE J Biomed Health Inform; 2020 Feb; 24(2):414-423. PubMed ID: 31369390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Type-1 Diabetes Patient Decision Simulator for In Silico Testing Safety and Effectiveness of Insulin Treatments.
    Vettoretti M; Facchinetti A; Sparacino G; Cobelli C
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1281-1290. PubMed ID: 28866479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating Prior Information in Adaptive Model Predictive Control for Multivariable Artificial Pancreas Systems.
    Sun X; Rashid M; Hobbs N; Brandt R; Askari MR; Cinar A
    J Diabetes Sci Technol; 2022 Jan; 16(1):19-28. PubMed ID: 34861777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoglycemia prevention via pump attenuation and red-yellow-green "traffic" lights using continuous glucose monitoring and insulin pump data.
    Hughes CS; Patek SD; Breton MD; Kovatchev BP
    J Diabetes Sci Technol; 2010 Sep; 4(5):1146-55. PubMed ID: 20920434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time adaptive models for the personalized prediction of glycemic profile in type 1 diabetes patients.
    Daskalaki E; Prountzou A; Diem P; Mougiakakou SG
    Diabetes Technol Ther; 2012 Feb; 14(2):168-74. PubMed ID: 21992270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of blood glucose predictors: the prediction-error grid analysis.
    Sivananthan S; Naumova V; Man CD; Facchinetti A; Renard E; Cobelli C; Pereverzyev SV
    Diabetes Technol Ther; 2011 Aug; 13(8):787-96. PubMed ID: 21612393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titration of Long-Acting Insulin Using Continuous Glucose Monitoring and Smart Insulin Pens in Type 1 Diabetes: A Model-Based Carbohydrate-Free Approach.
    El Fathi A; Fabris C; Breton MD
    Front Endocrinol (Lausanne); 2021; 12():795895. PubMed ID: 35082757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new index to optimally design and compare continuous glucose monitoring glucose prediction algorithms.
    Facchinetti A; Sparacino G; Trifoglio E; Cobelli C
    Diabetes Technol Ther; 2011 Feb; 13(2):111-9. PubMed ID: 21284477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forecasting of Glucose Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-Driven Algorithms Based on Continuous Glucose Monitoring Data Only.
    Prendin F; Del Favero S; Vettoretti M; Sparacino G; Facchinetti A
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33673415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Much Is Short-Term Glucose Prediction in Type 1 Diabetes Improved by Adding Insulin Delivery and Meal Content Information to CGM Data? A Proof-of-Concept Study.
    Zecchin C; Facchinetti A; Sparacino G; Cobelli C
    J Diabetes Sci Technol; 2016 Sep; 10(5):1149-60. PubMed ID: 27381030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Hour Blood Glucose Prediction in Type 1 Diabetes: A Patient-Specific Approach Using Shallow Neural Network Models.
    Kushner T; Breton MD; Sankaranarayanan S
    Diabetes Technol Ther; 2020 Dec; 22(12):883-891. PubMed ID: 32324062
    [No Abstract]   [Full Text] [Related]  

  • 15. A novel adaptive-weighted-average framework for blood glucose prediction.
    Wang Y; Wu X; Mo X
    Diabetes Technol Ther; 2013 Oct; 15(10):792-801. PubMed ID: 23883406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal model control based module for the elimination of meal and exercise announcements in hybrid artificial pancreas systems.
    Sala-Mira I; Garcia P; Díez JL; Bondia J
    Comput Methods Programs Biomed; 2022 Nov; 226():107061. PubMed ID: 36116400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
    Grosman B; Dassau E; Zisser HC; Jovanovic L; Doyle FJ
    J Diabetes Sci Technol; 2010 Jul; 4(4):961-75. PubMed ID: 20663463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction.
    Rabby MF; Tu Y; Hossen MI; Lee I; Maida AS; Hei X
    BMC Med Inform Decis Mak; 2021 Mar; 21(1):101. PubMed ID: 33726723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement.
    Turksoy K; Bayrak ES; Quinn L; Littlejohn E; Cinar A
    Diabetes Technol Ther; 2013 May; 15(5):386-400. PubMed ID: 23544672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating Glucose Variability into Glucose Forecasting Accuracy Assessment Using the New Glucose Variability Impact Index and the Prediction Consistency Index: An LSTM Case Example.
    Mosquera-Lopez C; Jacobs PG
    J Diabetes Sci Technol; 2022 Jan; 16(1):7-18. PubMed ID: 34490793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.