These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31597390)

  • 1. Performance Analysis of Positioning Solution Using Low-Cost Single-Frequency U-Blox Receiver Based on Baseline Length Constraint.
    Lu L; Ma L; Wu T; Chen X
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An SVM Based Weight Scheme for Improving Kinematic GNSS Positioning Accuracy with Low-Cost GNSS Receiver in Urban Environments.
    Lyu Z; Gao Y
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Cost GNSS and PPP-RTK: Investigating the Capabilities of the u-blox ZED-F9P Module.
    Robustelli U; Cutugno M; Pugliano G
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.
    Wang L; Li Z; Zhao J; Zhou K; Wang Z; Yuan H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Triple Checked Partial Ambiguity Resolution for GPS/BDS RTK Positioning.
    Lu L; Ma L; Liu W; Wu T; Chen B
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tightly-Coupled Integration of Multi-GNSS Single-Frequency RTK and MEMS-IMU for Enhanced Positioning Performance.
    Li T; Zhang H; Niu X; Gao Z
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29077070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance analysis on carrier phase-based tightly-coupled GPS/BDS/INS integration in GNSS degraded and denied environments.
    Han H; Wang J; Wang J; Tan X
    Sensors (Basel); 2015 Apr; 15(4):8685-711. PubMed ID: 25875191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise GNSS Positioning Using Smart Devices.
    Realini E; Caldera S; Pertusini L; Sampietro D
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29064417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Unified Form of Code Biases and Positioning Performance Analysis in Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) Precise Point Positioning Using Real Triple-Frequency Data.
    Liu P; Qin H; Cong L
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31151147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Cost GNSS Receivers for Local Monitoring: Experimental Simulation, and Analysis of Displacements.
    Biagi L; Grec FC; Negretti M
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of BeiDou Navigation Satellite System (BDS) Code Observations for Different Receiver Types and Their Influence on Wide-Lane Ambiguity Resolution.
    Lu Y; Wang Z; Ji S; Chen W; Weng D
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks.
    Nadarajah N; Khodabandeh A; Wang K; Choudhury M; Teunissen PJG
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying.
    Wielgocka N; Hadas T; Kaczmarek A; Marut G
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation and Analysis of Tightly Coupled Global Navigation Satellite System Precise Point Positioning/Inertial Navigation System (GNSS PPP/INS) with Insufficient Satellites for Land Vehicle Navigation.
    Liu Y; Liu F; Gao Y; Zhao L
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System.
    Jan SS; Tao AL
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27187403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation and Performance of a Deeply-Coupled GNSS Receiver with Low-Cost MEMS Inertial Sensors for Vehicle Urban Navigation.
    Feng X; Zhang T; Lin T; Tang H; Niu X
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A performance improvement method for low-cost land vehicle GPS/MEMS-INS attitude determination.
    Cong L; Li E; Qin H; Ling KV; Xue R
    Sensors (Basel); 2015 Mar; 15(3):5722-46. PubMed ID: 25760057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Analysis of GPS/BDS Dual/Triple-Frequency Network RTK in Urban Areas: A Case Study in Hong Kong.
    Xu Y; Chen W
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30050021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise Point Positioning Algorithm for Pseudolite Combined with GNSS in a Constrained Observation Environment.
    Sheng C; Gan X; Yu B; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.