These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31597417)

  • 1. Direct Writing of Microfluidic Three-Dimensional Photonic Crystal Structures for Terahertz Technology Applications.
    Ju X; Yang W; Gao S; Li Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41611-41616. PubMed ID: 31597417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz waves dynamic diffusion in 3D printed structures.
    Missori M; Pilozzi L; Conti C
    Sci Rep; 2022 May; 12(1):8613. PubMed ID: 35597803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus.
    Zhu P; Yang W; Wang R; Gao S; Li B; Li Q
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36435-36442. PubMed ID: 30270611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.
    Liao Y; Song J; Li E; Luo Y; Shen Y; Chen D; Cheng Y; Xu Z; Sugioka K; Midorikawa K
    Lab Chip; 2012 Feb; 12(4):746-9. PubMed ID: 22231027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic mesh devices-based terahertz parallel-plate resonators: characteristics and applications.
    Wang C; Li X; Huang Y; Xu W; Zhou R; Wang R; Xie L; Ying Y
    Opt Express; 2018 Sep; 26(19):24992-25002. PubMed ID: 30469607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallic and 3D-printed dielectric helical terahertz waveguides.
    Vogt DW; Anthony J; Leonhardt R
    Opt Express; 2015 Dec; 23(26):33359-69. PubMed ID: 26832000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive manufacturing of resonant fluidic sensors based on photonic bandgap waveguides for terahertz applications.
    Cao Y; Nallappan K; Guerboukha H; Gervais T; Skorobogatiy M
    Opt Express; 2019 Sep; 27(20):27663-27681. PubMed ID: 31684530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, fabrication and transmitted properties of terahertz paper photonic crystals.
    Zhang W; Lin X; Jin Z; Ma G; Zhong M
    Opt Express; 2013 Nov; 21(23):27622-30. PubMed ID: 24514280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient mode converter to deep-subwavelength region with photonic-crystal waveguide platform for terahertz applications.
    Yu X; Kim JY; Fujita M; Nagatsuma T
    Opt Express; 2019 Sep; 27(20):28707-28721. PubMed ID: 31684617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic study of terahertz time-domain spectra of historically informed black inks.
    Bardon T; May RK; Taday PF; Strlič M
    Analyst; 2013 Sep; 138(17):4859-69. PubMed ID: 23817328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal Structure-Free Method for Dielectric and Polarizability Characterization of Crystalline Materials at Terahertz Frequencies.
    Zhang T; Zhang Z; Arnold MA
    Appl Spectrosc; 2021 Jun; 75(6):647-653. PubMed ID: 33683165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz modulator based on insulator-metal transition in photonic crystal waveguide.
    Fan F; Hou Y; Jiang ZW; Wang XH; Chang SJ
    Appl Opt; 2012 Jul; 51(20):4589-96. PubMed ID: 22781233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terahertz real-time imaging uncooled array based on antenna- and cavity-coupled bolometers.
    Simoens F; Meilhan J
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2012):20130111. PubMed ID: 24567477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terahertz rare-earth orthoferrite metamaterials by 3-D direct writing technology.
    Zeng XX; Wang R; Xi XQ; Li B; Zhou J
    Opt Express; 2018 Jun; 26(13):17056-17065. PubMed ID: 30119523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terahertz photonic states in semiconductor-graphene cylinder structures.
    Yuan Y; Yao J; Xu W
    Opt Lett; 2012 Mar; 37(5):960-2. PubMed ID: 22378452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz demonstrations of effectively two-dimensional photonic bandgap structures.
    Zhao Y; Grischkowsky D
    Opt Lett; 2006 May; 31(10):1534-6. PubMed ID: 16642163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing.
    Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P
    ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet Laser Lithography of Titania Photonic Crystals for Terahertz-Wave Modulation.
    Kirihara S; Nonaka K; Kisanuki S; Nozaki H; Sakaguchi K
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29783660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization response of two-dimensional metallic photonic crystals studied by terahertz time-domain spectroscopy.
    Miyamaru F; Hangyo M
    Appl Opt; 2004 Feb; 43(6):1412-5. PubMed ID: 15008548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and Integration of Terahertz Technology within Microfluidic Platforms.
    Alfihed S; Bergen MH; Ciocoiu A; Holzman JF; Foulds IG
    Micromachines (Basel); 2018 Sep; 9(9):. PubMed ID: 30424386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.