BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31597447)

  • 1. Myocardin-Dependent Kv1.5 Channel Expression Prevents Phenotypic Modulation of Human Vessels in Organ Culture.
    Arévalo-Martínez M; Cidad P; García-Mateo N; Moreno-Estar S; Serna J; Fernández M; Swärd K; Simarro M; de la Fuente MA; López-López JR; Pérez-García MT
    Arterioscler Thromb Vasc Biol; 2019 Dec; 39(12):e273-e286. PubMed ID: 31597447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kv1.3 channels modulate human vascular smooth muscle cells proliferation independently of mTOR signaling pathway.
    Cidad P; Miguel-Velado E; Ruiz-McDavitt C; Alonso E; Jiménez-Pérez L; Asuaje A; Carmona Y; García-Arribas D; López J; Marroquín Y; Fernández M; Roqué M; Pérez-García MT; López-López JR
    Pflugers Arch; 2015 Aug; 467(8):1711-22. PubMed ID: 25208915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kv1.3 blockade inhibits proliferation of vascular smooth muscle cells in vitro and intimal hyperplasia in vivo.
    Bobi J; Garabito M; Solanes N; Cidad P; Ramos-Pérez V; Ponce A; Rigol M; Freixa X; Pérez-Martínez C; Pérez de Prado A; Fernández-Vázquez F; Sabaté M; Borrós S; López-López JR; Pérez-García MT; Roqué M
    Transl Res; 2020 Oct; 224():40-54. PubMed ID: 32522668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dedicator of cytokinesis 2, a novel regulator for smooth muscle phenotypic modulation and vascular remodeling.
    Guo X; Shi N; Cui XB; Wang JN; Fukui Y; Chen SY
    Circ Res; 2015 May; 116(10):e71-80. PubMed ID: 25788409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kv1.3 channels can modulate cell proliferation during phenotypic switch by an ion-flux independent mechanism.
    Cidad P; Jiménez-Pérez L; García-Arribas D; Miguel-Velado E; Tajada S; Ruiz-McDavitt C; López-López JR; Pérez-García MT
    Arterioscler Thromb Vasc Biol; 2012 May; 32(5):1299-307. PubMed ID: 22383699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HERP1 inhibits myocardin-induced vascular smooth muscle cell differentiation by interfering with SRF binding to CArG box.
    Doi H; Iso T; Yamazaki M; Akiyama H; Kanai H; Sato H; Kawai-Kowase K; Tanaka T; Maeno T; Okamoto E; Arai M; Kedes L; Kurabayashi M
    Arterioscler Thromb Vasc Biol; 2005 Nov; 25(11):2328-34. PubMed ID: 16151017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potent suppression of vascular smooth muscle cell migration and human neointimal hyperplasia by KV1.3 channel blockers.
    Cheong A; Li J; Sukumar P; Kumar B; Zeng F; Riches K; Munsch C; Wood IC; Porter KE; Beech DJ
    Cardiovasc Res; 2011 Feb; 89(2):282-9. PubMed ID: 20884640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of peroxisome proliferators-activated receptor-gamma in advanced glycation end product-mediated functional loss of voltage-gated potassium channel in rat coronary arteries.
    Gao S; Hua B; Liu Q; Liu H; Li W; Li H
    BMC Cardiovasc Disord; 2020 Jul; 20(1):337. PubMed ID: 32664860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of ion channels involved in the proliferative response of femoral artery smooth muscle cells.
    Cidad P; Moreno-Domínguez A; Novensá L; Roqué M; Barquín L; Heras M; Pérez-García MT; López-López JR
    Arterioscler Thromb Vasc Biol; 2010 Jun; 30(6):1203-11. PubMed ID: 20299686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IQGAP1 promotes the phenotypic switch of vascular smooth muscle by myocardin pathway: a potential target for varicose vein.
    Huang X; Jin Y; Zhou D; Xu G; Huang J; Shen L
    Int J Clin Exp Pathol; 2014; 7(10):6475-85. PubMed ID: 25400725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. miR-126 contributes to the epigenetic signature of diabetic vascular smooth muscle and enhances antirestenosis effects of Kv1.3 blockers.
    Arevalo-Martinez M; Cidad P; Moreno-Estar S; Fernández M; Albinsson S; Cózar-Castellano I; López-López JR; Pérez-Garcia MT
    Mol Metab; 2021 Nov; 53():101306. PubMed ID: 34298200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quaking, an RNA-binding protein, is a critical regulator of vascular smooth muscle cell phenotype.
    van der Veer EP; de Bruin RG; Kraaijeveld AO; de Vries MR; Bot I; Pera T; Segers FM; Trompet S; van Gils JM; Roeten MK; Beckers CM; van Santbrink PJ; Janssen A; van Solingen C; Swildens J; de Boer HC; Peters EA; Bijkerk R; Rousch M; Doop M; Kuiper J; Schalij MJ; van der Wal AC; Richard S; van Berkel TJ; Pickering JG; Hiemstra PS; Goumans MJ; Rabelink TJ; de Vries AA; Quax PH; Jukema JW; Biessen EA; van Zonneveld AJ
    Circ Res; 2013 Oct; 113(9):1065-75. PubMed ID: 23963726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastin-like recombinamer-based devices releasing Kv1.3 blockers for the prevention of intimal hyperplasia: An in vitro and in vivo study.
    Moreno-Estar S; Serrano S; Arévalo-Martínez M; Cidad P; López-López JR; Santos M; Pérez-Garcia MT; Arias FJ
    Acta Biomater; 2020 Oct; 115():264-274. PubMed ID: 32771595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of dysfunctional Kv channels in small coronary artery smooth muscle cells of streptozotocin-induced diabetic rats.
    Chai Q; Xu X; Jia Q; Dong Q; Liu Z; Zhang W; Chen L
    Chin J Physiol; 2007 Aug; 50(4):171-7. PubMed ID: 17982915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K+ channels expression in hypertension after arterial injury, and effect of selective Kv1.3 blockade with PAP-1 on intimal hyperplasia formation.
    Cidad P; Novensà L; Garabito M; Batlle M; Dantas AP; Heras M; López-López JR; Pérez-García MT; Roqué M
    Cardiovasc Drugs Ther; 2014 Dec; 28(6):501-11. PubMed ID: 25348824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MYOSLID Is a Novel Serum Response Factor-Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program.
    Zhao J; Zhang W; Lin M; Wu W; Jiang P; Tou E; Xue M; Richards A; Jourd'heuil D; Asif A; Zheng D; Singer HA; Miano JM; Long X
    Arterioscler Thromb Vasc Biol; 2016 Oct; 36(10):2088-99. PubMed ID: 27444199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of K
    Nishijima Y; Cao S; Chabowski DS; Korishettar A; Ge A; Zheng X; Sparapani R; Gutterman DD; Zhang DX
    Circ Res; 2017 Feb; 120(4):658-669. PubMed ID: 27872049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implication of Inflammation and Epigenetic Readers in Coronary Artery Remodeling in Patients With Pulmonary Arterial Hypertension.
    Meloche J; Lampron MC; Nadeau V; Maltais M; Potus F; Lambert C; Tremblay E; Vitry G; Breuils-Bonnet S; Boucherat O; Charbonneau E; Provencher S; Paulin R; Bonnet S
    Arterioscler Thromb Vasc Biol; 2017 Aug; 37(8):1513-1523. PubMed ID: 28473439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yap1 protein regulates vascular smooth muscle cell phenotypic switch by interaction with myocardin.
    Xie C; Guo Y; Zhu T; Zhang J; Ma PX; Chen YE
    J Biol Chem; 2012 Apr; 287(18):14598-605. PubMed ID: 22411986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transdifferentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling.
    Zhu P; Huang L; Ge X; Yan F; Wu R; Ao Q
    Int J Exp Pathol; 2006 Dec; 87(6):463-74. PubMed ID: 17222214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.