These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 31597509)
1. Research on corrosion behavior and biocompatibility of a porous Mg-3%Zn/5%β-Ca Tang M; Yan Y; OuYang J; Yu K; Liu C; Zhou X; Wang Z; Deng Y; Shuai C J Appl Biomater Funct Mater; 2019; 17(2):2280800019857064. PubMed ID: 31597509 [TBL] [Abstract][Full Text] [Related]
2. Improvement of the mechanical properties and corrosion resistance of biodegradable β-Ca Yan Y; Kang Y; Li D; Yu K; Xiao T; Deng Y; Dai H; Dai Y; Xiong H; Fang H Mater Sci Eng C Mater Biol Appl; 2017 May; 74():582-596. PubMed ID: 28254333 [TBL] [Abstract][Full Text] [Related]
4. In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composites. Yu K; Chen L; Zhao J; Li S; Dai Y; Huang Q; Yu Z Acta Biomater; 2012 Jul; 8(7):2845-55. PubMed ID: 22503951 [TBL] [Abstract][Full Text] [Related]
5. Production and characterization of highly porous biodegradable Mg alloy scaffolds containing Ca, Zn and Co. Mutlu I Biomed Mater Eng; 2018; 29(1):119-135. PubMed ID: 29254078 [TBL] [Abstract][Full Text] [Related]
6. Enhanced osteoinductivity and corrosion resistance of dopamine/gelatin/rhBMP-2-coated β-TCP/Mg-Zn orthopedic implants: An in vitro and in vivo study. Liu C; Wang J; Gao C; Wang Z; Zhou X; Tang M; Yu K; Deng Y PLoS One; 2020; 15(1):e0228247. PubMed ID: 31999748 [TBL] [Abstract][Full Text] [Related]
7. The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of β-TCP/Zn-Mg composites. Pan C; Sun X; Xu G; Su Y; Liu D Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110397. PubMed ID: 31923980 [TBL] [Abstract][Full Text] [Related]
8. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold. Zhao D; Han C; Peng B; Cheng T; Fan J; Yang L; Chen L; Wei Q Acta Biomater; 2022 Nov; 153():614-629. PubMed ID: 36162767 [TBL] [Abstract][Full Text] [Related]
9. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration. Parai R; Bandyopadhyay-Ghosh S J Mech Behav Biomed Mater; 2019 Aug; 96():45-52. PubMed ID: 31029994 [TBL] [Abstract][Full Text] [Related]
10. Preparation of medical Mg-Zn alloys and the effect of different zinc contents on the alloy. Hu Y; Guo X; Qiao Y; Wang X; Lin Q J Mater Sci Mater Med; 2022 Jan; 33(1):9. PubMed ID: 34982233 [TBL] [Abstract][Full Text] [Related]
11. [ Zhang N; Liu N; Sun C; Zhu J; Wang D; Dai Y; Wu Y; Wang Y; Li J; Zhao D; Yan J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Mar; 32(3):298-305. PubMed ID: 29806278 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Kang MH; Lee H; Jang TS; Seong YJ; Kim HE; Koh YH; Song J; Jung HD Acta Biomater; 2019 Jan; 84():453-467. PubMed ID: 30500444 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in vivo evaluation of MgF Yu W; Zhao H; Ding Z; Zhang Z; Sun B; Shen J; Chen S; Zhang B; Yang K; Liu M; Chen D; He Y Colloids Surf B Biointerfaces; 2017 Jan; 149():330-340. PubMed ID: 27792982 [TBL] [Abstract][Full Text] [Related]
14. Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications. Tong X; Zhu L; Wang K; Shi Z; Huang S; Li Y; Ma J; Wen C; Lin J Acta Biomater; 2022 Apr; 142():361-373. PubMed ID: 35189378 [TBL] [Abstract][Full Text] [Related]
15. Structure, mechanical property and corrosion behaviors of (HA+β-TCP)/Mg-5Sn composite with interpenetrating networks. Wang X; Li JT; Xie MY; Qu LJ; Zhang P; Li XL Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():386-92. PubMed ID: 26249605 [TBL] [Abstract][Full Text] [Related]
16. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
17. Mimicking the mechanical properties of cortical bone with an additively manufactured biodegradable Zn-3Mg alloy. Zheng Y; Huang C; Li Y; Gao J; Yang Y; Zhao S; Che H; Yang Y; Yao S; Li W; Zhou J; Zadpoor AA; Wang L Acta Biomater; 2024 Jul; 182():139-155. PubMed ID: 38750914 [TBL] [Abstract][Full Text] [Related]
18. Novel porous Ti35Zr28Nb scaffolds fabricated by powder metallurgy with excellent osteointegration ability for bone-tissue engineering applications. Xu W; Tian J; Liu Z; Lu X; Hayat MD; Yan Y; Li Z; Qu X; Wen C Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110015. PubMed ID: 31546430 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945 [TBL] [Abstract][Full Text] [Related]
20. Mechanical Properties, Microstructure, Degradation Behavior, and Biocompatibility of Zn-0.5Ti-0.5Fe and Zn-0.5Ti-0.5Mg Guided Bone Regeneration Barrier Membranes Prepared Using a Powder Metallurgy Method. Chu X; Fu Z; Liu Y; Dai Y; Wang J; Song J; Dong Z; Yan Y; Yu K ACS Biomater Sci Eng; 2024 Oct; 10(10):6520-6532. PubMed ID: 39360994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]