BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 3159751)

  • 21. Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle.
    Kawai M; Halvorson HR
    Biophys J; 1991 Feb; 59(2):329-42. PubMed ID: 2009356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mechanism of muscle contraction. Biochemical, mechanical, and structural approaches to elucidate cross-bridge action in muscle.
    Brenner B; Eisenberg E
    Basic Res Cardiol; 1987; 82 Suppl 2():3-16. PubMed ID: 2959261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of antibodies to light meromyosin on glycerinated muscle fibres and on actomyosin adenosinetriphosphatases.
    Szöör A; Kalamkarova M; Rapcsák M; Kofman E; Aleynikova K; Richter P
    Acta Physiol Hung; 1983; 61(1-2):69-75. PubMed ID: 6227205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contraction of rabbit skinned skeletal muscle fibers at low levels of magnesium adenosine triphosphate.
    Moss RL; Haworth RA
    Biophys J; 1984 Apr; 45(4):733-42. PubMed ID: 6232958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria.
    Ferenczi MA; Goldman YE; Simmons RM
    J Physiol; 1984 May; 350():519-43. PubMed ID: 6611405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of orthophosphate in crossbridge kinetics in chemically skinned rabbit psoas fibres as detected with sinusoidal and step length alterations.
    Kawai M
    J Muscle Res Cell Motil; 1986 Oct; 7(5):421-34. PubMed ID: 3491834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of amrinone on shortening velocity and force development in skinned skeletal muscle fibres.
    Bottinelli R; Cappelli V; Morner SE; Reggiani C
    J Muscle Res Cell Motil; 1993 Feb; 14(1):110-20. PubMed ID: 8478421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres.
    Dantzig JA; Hibberd MG; Trentham DR; Goldman YE
    J Physiol; 1991 Jan; 432():639-80. PubMed ID: 1886072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium-activated tension of skinned muscle fibers of the frog. Dependence on magnesium adenosine triphosphate concentration.
    Godt RE
    J Gen Physiol; 1974 Jun; 63(6):722-39. PubMed ID: 4545390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of myosin to actin in myofibrils during ATP hydrolysis.
    Duong AM; Reisler E
    Biochemistry; 1989 Feb; 28(3):1307-13. PubMed ID: 2523735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of MgATP and inorganic phosphate ions in cross-bridge kinetics in insect (Lethocerus colossicus) flight muscle.
    Marcussen BL; Kawai M
    Prog Clin Biol Res; 1990; 327():805-13. PubMed ID: 2138792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myofibrillar ATPase activity and mechanical performance of skinned fibres from rabbit psoas muscle.
    Potma EJ; Stienen GJ; Barends JP; Elzinga G
    J Physiol; 1994 Jan; 474(2):303-17. PubMed ID: 8006817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Initiation of active contraction by photogeneration of adenosine-5'-triphosphate in rabbit psoas muscle fibres.
    Goldman YE; Hibberd MG; Trentham DR
    J Physiol; 1984 Sep; 354():605-24. PubMed ID: 6481646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium regulation of cardiac myofibrillar activation: effects of MgATP.
    Solaro RJ
    J Supramol Struct; 1975; 3(4):368-75. PubMed ID: 127891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle.
    Yanagida T; Arata T; Oosawa F
    Nature; 1985 Jul 25-31; 316(6026):366-9. PubMed ID: 4022127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Actomyosin kinetics of pure fast and slow rat myosin isoforms studied by in vitro motility assay approach.
    Canepari M; Maffei M; Longa E; Geeves M; Bottinelli R
    Exp Physiol; 2012 Jul; 97(7):873-81. PubMed ID: 22467761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crossbridge head detachment rate constants determined from a model that explains the behavior of both weakly- and strongly-binding crossbridges.
    Schoenberg M
    Adv Exp Med Biol; 1998; 453():425-33; discussion 433-4. PubMed ID: 9889854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers.
    Kawai M; Zhao Y
    Biophys J; 1993 Aug; 65(2):638-51. PubMed ID: 8218893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two attached non-rigor crossbridge forms in insect flight muscle.
    Reedy MC; Reedy MK; Tregear RT
    J Mol Biol; 1988 Nov; 204(2):357-83. PubMed ID: 3221390
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing diastolic function by strain-dependent detachment of cardiac myosin crossbridges.
    Palmer BM; Swank DM; Miller MS; Tanner BCW; Meyer M; LeWinter MM
    J Gen Physiol; 2020 Apr; 152(4):. PubMed ID: 32197271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.