These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31597570)

  • 21. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.
    Saunders DG; Win J; Cano LM; Szabo LJ; Kamoun S; Raffaele S
    PLoS One; 2012; 7(1):e29847. PubMed ID: 22238666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants.
    Zhao P; Liu F; Li YM; Cai L
    Sci Rep; 2016 Jul; 6():29339. PubMed ID: 27385413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First Report of the Telial Stage of Japanese Apple Rust on Juniperus chinensis in North America and the Aecial Stage on Malus domestica.
    Gregory NF; Bischoff JF; Dixon LJ; Ciurlino R
    Plant Dis; 2010 Sep; 94(9):1169. PubMed ID: 30743712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and characterization of two new
    Wang L; Sun C; Jia S; Liang YM
    Mycologia; 2022; 114(5):857-867. PubMed ID: 35895294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Remarkable Expansion of Oligopeptide Transporter Genes in Rust Fungi (Pucciniales) Suggests a Specialization in Nutrient Acquisition for Obligate Biotrophy.
    Guerillot P; Salamov A; Louet C; Morin E; Frey P; Grigoriev IV; Duplessis S
    Phytopathology; 2023 Feb; 113(2):252-264. PubMed ID: 36044359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in understanding obligate biotrophy in rust fungi.
    Lorrain C; Gonçalves Dos Santos KC; Germain H; Hecker A; Duplessis S
    New Phytol; 2019 May; 222(3):1190-1206. PubMed ID: 30554421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First Record of the Rust Fungus
    Bouwmeester K; Swertz CA
    Plant Dis; 2024 Jul; 108(7):1969-1971. PubMed ID: 38381970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Host Adaptation and Virulence in Heteroecious Rust Fungi.
    Duplessis S; Lorrain C; Petre B; Figueroa M; Dodds PN; Aime MC
    Annu Rev Phytopathol; 2021 Aug; 59():403-422. PubMed ID: 34077239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quest to elucidate the life cycle of Puccinia psidii sensu lato.
    Morin L; Talbot MJ; Glen M
    Fungal Biol; 2014 Feb; 118(2):253-63. PubMed ID: 24528646
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of eighteen Berberis species as alternate hosts of Puccinia striiformis f. sp. tritici and virulence variation in the pathogen isolates from natural infection of barberry plants in China.
    Zhao J; Wang L; Wang Z; Chen X; Zhang H; Yao J; Zhan G; Chen W; Huang L; Kang Z
    Phytopathology; 2013 Sep; 103(9):927-34. PubMed ID: 23514262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intrinsically Disordered Kiwellin Protein-Like Effectors Target Plant Chloroplasts and are Extensively Present in Rust Fungi.
    Jaswal R; Rajarammohan S; Dubey H; Kiran K; Rawal H; Sonah H; Deshmukh R; Sharma TR
    Mol Biotechnol; 2024 Apr; 66(4):845-864. PubMed ID: 37000361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome size analyses of Pucciniales reveal the largest fungal genomes.
    Tavares S; Ramos AP; Pires AS; Azinheira HG; Caldeirinha P; Link T; Abranches R; Silva Mdo C; Voegele RT; Loureiro J; Talhinhas P
    Front Plant Sci; 2014; 5():422. PubMed ID: 25206357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phylogenetics and Phylogenomics of Rust Fungi.
    Aime MC; McTaggart AR; Mondo SJ; Duplessis S
    Adv Genet; 2017; 100():267-307. PubMed ID: 29153402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Methods for Predicting Effectors in Rust Pathogens.
    Sperschneider J; Dodds PN; Taylor JM; Duplessis S
    Methods Mol Biol; 2017; 1659():73-83. PubMed ID: 28856642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cause and Effectors: Whole-Genome Comparisons Reveal Shared but Rapidly Evolving Effector Sets among Host-Specific Plant-Castrating Fungi.
    Beckerson WC; Rodríguez de la Vega RC; Hartmann FE; Duhamel M; Giraud T; Perlin MH
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690676
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of the in planta Phakopsora pachyrhizi secretome and potential effector families.
    de Carvalho MC; Costa Nascimento L; Darben LM; Polizel-Podanosqui AM; Lopes-Caitar VS; Qi M; Rocha CS; Carazzolle MF; Kuwahara MK; Pereira GA; Abdelnoor RV; Whitham SA; Marcelino-Guimarães FC
    Mol Plant Pathol; 2017 Apr; 18(3):363-377. PubMed ID: 27010366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Four new species of
    Sun C; Liu YF; Liang YM; Wang L
    Mycologia; 2024; 116(2):309-321. PubMed ID: 38252498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infection assays in Arabidopsis reveal candidate effectors from the poplar rust fungus that promote susceptibility to bacteria and oomycete pathogens.
    Germain H; Joly DL; Mireault C; Plourde MB; Letanneur C; Stewart D; Morency MJ; Petre B; Duplessis S; Séguin A
    Mol Plant Pathol; 2018 Jan; 19(1):191-200. PubMed ID: 27868319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First Report of Japanese Apple Rust Caused by Gymnosporangium yamadae on Malus spp. in North America.
    Yun HY; Minnis AM; Rossman AY
    Plant Dis; 2009 Apr; 93(4):430. PubMed ID: 30764234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phylogeny, biogeography, and host range of gall midges (Diptera: Cecidomyiidae) feeding on spores of rust fungi (Basidiomycota: Pucciniales).
    Gómez-Zapata PA; Johnson MA; Bonacci T; Aime MC
    J Insect Sci; 2024 Jul; 24(4):. PubMed ID: 39193858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.