BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31597583)

  • 1. Implementation of advanced Optimum Contribution Selection in small-scale breeding schemes: prospects and challenges in Vorderwald cattle.
    Kohl S; Wellmann R; Herold P
    Animal; 2020 Mar; 14(3):452-463. PubMed ID: 31597583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced optimum contribution selection as a tool to improve regional cattle breeds: a feasibility study for Vorderwald cattle.
    Kohl S; Wellmann R; Herold P
    Animal; 2020 Jan; 14(1):1-12. PubMed ID: 31296274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel optimum contribution selection methods accounting for conflicting objectives in breeding programs for livestock breeds with historical migration.
    Wang Y; Bennewitz J; Wellmann R
    Genet Sel Evol; 2017 May; 49(1):45. PubMed ID: 28499352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-Term Impact of Optimum Contribution Selection Strategies on Local Livestock Breeds with Historical Introgression Using the Example of German Angler Cattle.
    Wang Y; Segelke D; Emmerling R; Bennewitz J; Wellmann R
    G3 (Bethesda); 2017 Dec; 7(12):4009-4018. PubMed ID: 29089375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of kinship matrices on genetic gain and inbreeding with optimum contribution selection in a genomic dairy cattle breeding program.
    Gautason E; Sahana G; Guldbrandtsen B; Berg P
    Genet Sel Evol; 2023 Jul; 55(1):48. PubMed ID: 37460999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic rotational crossbreeding with advanced optimum contribution selection methods applied to simulated German Angler and German Holstein dairy cattle populations.
    Stock J; Esfandyari H; Wellmann R; Hinrichs D; Bennewitz J
    J Anim Breed Genet; 2023 Mar; 140(2):121-131. PubMed ID: 36449261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of migrant breeds to the genetic gain of beef traits of German Vorderwald and Hinterwald cattle.
    Hartwig S; Wellmann R; Hamann H; Bennewitz J
    J Anim Breed Genet; 2014 Dec; 131(6):496-503. PubMed ID: 24965852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-selection against a lethal recessive allele in breeding schemes with optimum-contribution selection or truncation selection.
    Hjortø L; Henryon M; Liu H; Berg P; Thomasen JR; Sørensen AC
    Genet Sel Evol; 2021 Sep; 53(1):75. PubMed ID: 34551728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of genomic selection on genetic diversity and genetic gain in three French dairy cattle breeds.
    Doublet AC; Croiseau P; Fritz S; Michenet A; Hozé C; Danchin-Burge C; Laloë D; Restoux G
    Genet Sel Evol; 2019 Sep; 51(1):52. PubMed ID: 31547802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection with inbreeding control in simulated young bull schemes for local dairy cattle breeds.
    Gandini G; Stella A; Del Corvo M; Jansen GB
    J Dairy Sci; 2014 Mar; 97(3):1790-8. PubMed ID: 24440254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimum contribution selection for conserved populations with historic migration.
    Wellmann R; Hartwig S; Bennewitz J
    Genet Sel Evol; 2012 Nov; 44(1):34. PubMed ID: 23153196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short communication: Importance of introgression for milk traits in the German Vorderwald and Hinterwald cattle.
    Hartwig S; Wellmann R; Emmerling R; Hamann H; Bennewitz J
    J Dairy Sci; 2015 Mar; 98(3):2033-8. PubMed ID: 25529416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population.
    Mueller ML; Cole JB; Sonstegard TS; Van Eenennaam AL
    J Dairy Sci; 2019 May; 102(5):4215-4226. PubMed ID: 30852022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breeding schemes with optimum-contribution selection or truncation selection for beef cattle destined for use on dairy females.
    Hjortø L; Andersen T; Kargo M; Sørensen AC
    J Dairy Sci; 2022 May; 105(5):4314-4323. PubMed ID: 35307183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pedigree relationships to control inbreeding in optimum-contribution selection realise more genetic gain than genomic relationships.
    Henryon M; Liu H; Berg P; Su G; Nielsen HM; Gebregiwergis GT; Sørensen AC
    Genet Sel Evol; 2019 Jul; 51(1):39. PubMed ID: 31286868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the benefits and perils of importing genetic material in small cattle breeding programs via simulation.
    Obšteter J; Jenko J; Pocrnic I; Gorjanc G
    J Dairy Sci; 2023 Aug; 106(8):5593-5605. PubMed ID: 37474361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of dairy cattle breeding designs that use genomic selection.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Dairy Sci; 2011 Jan; 94(1):493-500. PubMed ID: 21183061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotyping more cows increases genetic gain and reduces rate of true inbreeding in a dairy cattle breeding scheme using female reproductive technologies.
    Thomasen JR; Liu H; Sørensen AC
    J Dairy Sci; 2020 Jan; 103(1):597-606. PubMed ID: 31733861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of conservation and development strategies with a limited stakeholder approach for local cattle breeds.
    Schäler J; Addo S; Thaller G; Hinrichs D
    Animal; 2019 Dec; 13(12):2922-2931. PubMed ID: 31241033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trends in genome-wide and region-specific genetic diversity in the Dutch-Flemish Holstein-Friesian breeding program from 1986 to 2015.
    Doekes HP; Veerkamp RF; Bijma P; Hiemstra SJ; Windig JJ
    Genet Sel Evol; 2018 Apr; 50(1):15. PubMed ID: 29642838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.