BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31597602)

  • 21. An innovative non-targeted control system based on NIR spectral information for detecting non-compliant batches of sweet almonds.
    Vega-Castellote M; Sánchez MT; Torres I; Pérez-Marín D
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119407. PubMed ID: 33422869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and Analysis of Amygdalin, Neoamygdalin and Amygdalin Amide in Different Processed Bitter Almonds by HPLC-ESI-MS/MS and HPLC-DAD.
    Xu S; Xu X; Yuan S; Liu H; Liu M; Zhang Y; Zhang H; Gao Y; Lin R; Li X
    Molecules; 2017 Aug; 22(9):. PubMed ID: 28867779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteome analysis of the almond kernel (Prunus dulcis).
    Li S; Geng F; Wang P; Lu J; Ma M
    J Sci Food Agric; 2016 Aug; 96(10):3351-7. PubMed ID: 26526192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of Near-Infrared Spectroscopy and Chemometrics for the Nondestructive Identification of Concealed Damage in Raw Almonds (Prunus dulcis).
    Rogel-Castillo C; Boulton R; Opastpongkarn A; Huang G; Mitchell AE
    J Agric Food Chem; 2016 Jul; 64(29):5958-62. PubMed ID: 27309980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variation in Amygdalin Content in Kernels of Six Almond Species (
    Wang W; Xiao XZ; Xu XQ; Li ZJ; Zhang JM
    Front Plant Sci; 2021; 12():753151. PubMed ID: 35154172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome profiling of fully open flowers in a frost-tolerant almond genotype in response to freezing stress.
    Hosseinpour B; Sepahvand S; Kamali Aliabad K; Bakhtiarizadeh M; Imani A; Assareh R; Salami SA
    Mol Genet Genomics; 2018 Feb; 293(1):151-163. PubMed ID: 28929226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HR-LC-ESI-Orbitrap-MS based metabolite profiling of Prunus dulcis Mill. (Italian cultivars Toritto and Avola) husks and evaluation of antioxidant activity.
    Bottone A; Masullo M; Montoro P; Pizza C; Piacente S
    Phytochem Anal; 2019 Jul; 30(4):415-423. PubMed ID: 30762260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC-MS.
    Xie L; Bolling BW
    Food Chem; 2014 Apr; 148():300-6. PubMed ID: 24262561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium.
    Gallo A; Solfrizzo M; Epifani F; Panzarini G; Perrone G
    Int J Food Microbiol; 2016 Jan; 217():162-9. PubMed ID: 26540623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discrimination of almonds (Prunus dulcis) geographical origin by minerals and fatty acids profiling.
    Amorello D; Orecchio S; Pace A; Barreca S
    Nat Prod Res; 2016 Sep; 30(18):2107-10. PubMed ID: 26566684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and quantitation of amygdalin in Apricot-kernel and Prunus Tomentosa Thunb. by HPLC with solid-phase extraction.
    Lv WF; Ding MY; Zheng R
    J Chromatogr Sci; 2005 Aug; 43(7):383-7. PubMed ID: 16176653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variability in almond oil chemical traits from traditional cultivars and native genetic resources from Argentina.
    Maestri D; Martínez M; Bodoira R; Rossi Y; Oviedo A; Pierantozzi P; Torres M
    Food Chem; 2015 Mar; 170():55-61. PubMed ID: 25306317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genotyping by Sequencing in Almond: SNP Discovery, Linkage Mapping, and Marker Design.
    Goonetilleke SN; March TJ; Wirthensohn MG; Arús P; Walker AR; Mather DE
    G3 (Bethesda); 2018 Jan; 8(1):161-172. PubMed ID: 29141988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of genotype and crop year in the chemometrics of almond and pistachio oils.
    Rabadán A; Álvarez-Ortí M; Gómez R; de Miguel C; Pardo JE
    J Sci Food Agric; 2018 Apr; 98(6):2402-2410. PubMed ID: 29023801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fatty acid and phenolic profiles of almond grown in Serbia.
    Čolić SD; Fotirić Akšić MM; Lazarević KB; Zec GN; Gašić UM; Dabić Zagorac DČ; Natić MM
    Food Chem; 2017 Nov; 234():455-463. PubMed ID: 28551260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of roasting conditions on color and volatile profile including HMF level in sweet almonds (Prunus dulcis).
    Agila A; Barringer S
    J Food Sci; 2012 Apr; 77(4):C461-8. PubMed ID: 22429278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Food processing and structure impact the metabolizable energy of almonds.
    Gebauer SK; Novotny JA; Bornhorst GM; Baer DJ
    Food Funct; 2016 Oct; 7(10):4231-4238. PubMed ID: 27713968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS-NMR) as quick and direct insight of almonds.
    Salvo A; Rotondo A; Mangano V; Grimaldi M; Stillitano I; D'Ursi AM; Dugo G; Rastrelli L
    Nat Prod Res; 2020 Jan; 34(1):71-77. PubMed ID: 30789029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of processing on metabolism of amygdalin from bitter almond in rat].
    Fang M; Fu Z; Wang Q; Wang S; Xiao C; Zheng X
    Zhongguo Zhong Yao Za Zhi; 2010 Oct; 35(20):2684-8. PubMed ID: 21246818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel.
    Lin JT; Liu SC; Hu CC; Shyu YS; Hsu CY; Yang DJ
    Food Chem; 2016 Jan; 190():520-528. PubMed ID: 26213005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.