These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 31597703)
1. Ostreolysin A and anthrolysin O use different mechanisms to control movement of cholesterol from the plasma membrane to the endoplasmic reticulum. Johnson KA; Endapally S; Vazquez DC; Infante RE; Radhakrishnan A J Biol Chem; 2019 Nov; 294(46):17289-17300. PubMed ID: 31597703 [TBL] [Abstract][Full Text] [Related]
2. The use of anthrolysin O and ostreolysin A to study cholesterol in cell membranes. Johnson KA; Radhakrishnan A Methods Enzymol; 2021; 649():543-566. PubMed ID: 33712199 [TBL] [Abstract][Full Text] [Related]
3. High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS. He C; Hu X; Jung RS; Weston TA; Sandoval NP; Tontonoz P; Kilburn MR; Fong LG; Young SG; Jiang H Proc Natl Acad Sci U S A; 2017 Feb; 114(8):2000-2005. PubMed ID: 28167768 [TBL] [Abstract][Full Text] [Related]
4. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Das A; Brown MS; Anderson DD; Goldstein JL; Radhakrishnan A Elife; 2014 Jun; 3():. PubMed ID: 24920391 [TBL] [Abstract][Full Text] [Related]
5. Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol. Infante RE; Radhakrishnan A Elife; 2017 Apr; 6():. PubMed ID: 28414269 [TBL] [Abstract][Full Text] [Related]
6. Molecular Discrimination between Two Conformations of Sphingomyelin in Plasma Membranes. Endapally S; Frias D; Grzemska M; Gay A; Tomchick DR; Radhakrishnan A Cell; 2019 Feb; 176(5):1040-1053.e17. PubMed ID: 30712872 [TBL] [Abstract][Full Text] [Related]
7. Monitoring and Modulating Intracellular Cholesterol Trafficking Using ALOD4, a Cholesterol-Binding Protein. Endapally S; Infante RE; Radhakrishnan A Methods Mol Biol; 2019; 1949():153-163. PubMed ID: 30790255 [TBL] [Abstract][Full Text] [Related]
8. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. Skočaj M; Resnik N; Grundner M; Ota K; Rojko N; Hodnik V; Anderluh G; Sobota A; Maček P; Veranič P; Sepčić K PLoS One; 2014; 9(3):e92783. PubMed ID: 24664106 [TBL] [Abstract][Full Text] [Related]
9. Aster Proteins Regulate the Accessible Cholesterol Pool in the Plasma Membrane. Ferrari A; He C; Kennelly JP; Sandhu J; Xiao X; Chi X; Jiang H; Young SG; Tontonoz P Mol Cell Biol; 2020 Sep; 40(19):. PubMed ID: 32719109 [TBL] [Abstract][Full Text] [Related]
10. Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B. Ota K; Leonardi A; Mikelj M; Skočaj M; Wohlschlager T; Künzler M; Aebi M; Narat M; Križaj I; Anderluh G; Sepčić K; Maček P Biochimie; 2013 Oct; 95(10):1855-64. PubMed ID: 23806422 [TBL] [Abstract][Full Text] [Related]
11. Accessibility of cholesterol in endoplasmic reticulum membranes and activation of SREBP-2 switch abruptly at a common cholesterol threshold. Sokolov A; Radhakrishnan A J Biol Chem; 2010 Sep; 285(38):29480-90. PubMed ID: 20573965 [TBL] [Abstract][Full Text] [Related]
12. Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex. Naito T; Ercan B; Krshnan L; Triebl A; Koh DHZ; Wei FY; Tomizawa K; Torta FT; Wenk MR; Saheki Y Elife; 2019 Nov; 8():. PubMed ID: 31724953 [TBL] [Abstract][Full Text] [Related]
13. Use of mutant 125I-perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. Das A; Goldstein JL; Anderson DD; Brown MS; Radhakrishnan A Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10580-5. PubMed ID: 23754385 [TBL] [Abstract][Full Text] [Related]
14. Different kinetics of cholesterol delivery to components of the cholesterol homeostatic machinery: implications for cholesterol trafficking to the endoplasmic reticulum. Kristiana I; Yang H; Brown AJ Biochim Biophys Acta; 2008; 1781(11-12):724-30. PubMed ID: 18838129 [TBL] [Abstract][Full Text] [Related]
15. Sphingomyelin depletion in cultured cells blocks proteolysis of sterol regulatory element binding proteins at site 1. Scheek S; Brown MS; Goldstein JL Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11179-83. PubMed ID: 9326582 [TBL] [Abstract][Full Text] [Related]
16. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes. Maekawa M; Yang Y; Fairn GD Toxins (Basel); 2016 Mar; 8(3):. PubMed ID: 27005662 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of plasmalemmal shedding of vesicles induced by the cholesterol/sphingomyelin binding protein, ostreolysin A-mCherry. Skočaj M; Yu Y; Grundner M; Resnik N; Bedina Zavec A; Leonardi A; Križaj I; Guella G; Maček P; Kreft ME; Frangež R; Veranič P; Sepčić K Biochim Biophys Acta; 2016 Nov; 1858(11):2882-2893. PubMed ID: 27591807 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic Insights into the Cholesterol-dependent Binding of Perfringolysin O-based Probes and Cell Membranes. Johnson BB; Breña M; Anguita J; Heuck AP Sci Rep; 2017 Oct; 7(1):13793. PubMed ID: 29061991 [TBL] [Abstract][Full Text] [Related]
19. Effects of 25-hydroxycholesterol on cholesterol esterification and sterol regulatory element-binding protein processing are dissociable: implications for cholesterol movement to the regulatory pool in the endoplasmic reticulum. Du X; Pham YH; Brown AJ J Biol Chem; 2004 Nov; 279(45):47010-6. PubMed ID: 15317807 [TBL] [Abstract][Full Text] [Related]
20. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction. Nelson LD; Johnson AE; London E J Biol Chem; 2008 Feb; 283(8):4632-42. PubMed ID: 18089559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]