BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 3159788)

  • 1. Preliminary characterization of human T cell suppressor factor (HTsF) isolated from tonsil cells by monoclonal antibody immunoadsorbence.
    Steele JK; Stammers AT; Levy JG
    J Immunol; 1985 Aug; 135(2):1201-6. PubMed ID: 3159788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of a tumor-specific T suppressor factor from a T cell hybridoma.
    Steele JK; Stammers AT; Levy JG
    J Immunol; 1985 Apr; 134(4):2767-78. PubMed ID: 2579156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary characterization of a soluble immunosuppressive molecule from DBA/2 spleen cells using monoclonal antibody immunoadsorbence.
    Steele JK; Stammers AT; Chan A; Maier T; Levy JG
    Cell Immunol; 1985 Feb; 90(2):303-13. PubMed ID: 3155655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a monoclonal antibody directed to a T cell suppressor factor.
    Maier T; Stammers AT; Levy JG
    J Immunol; 1983 Oct; 131(4):1843-8. PubMed ID: 6413579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A monoclonal antibody raised to tumor-specific T cell-derived suppressor factors also recognizes T suppressor inducer factors of the 4-hydroxy-3-nitrophenyl acetyl hapten suppressor network.
    Steele JK; Kawasaki H; Kuchroo VK; Minami M; Levy JG; Dorf ME
    J Immunol; 1987 Oct; 139(8):2629-34. PubMed ID: 2443567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a T suppressor factor by using a monoclonal antibody.
    Ferguson TA; Beaman KD; Iverson GM
    J Immunol; 1985 May; 134(5):3163-71. PubMed ID: 2580016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunization of DBA/2 mice with a T cell hybridoma-derived TsF increases immune resistance to the syngeneic tumors P815 and L1210.
    Steele JK; Singhai R; Stammers AT; Levy JG
    J Immunol; 1986 Nov; 137(9):3025-30. PubMed ID: 3489783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of an antigen-specific T suppressor factor that suppresses the in vivo response of DBA/2 mice to ferredoxin.
    Steele JK; Chu NR; Chan A; North J; Levy JG
    J Immunol; 1987 Jul; 139(2):469-75. PubMed ID: 3496382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressor T cell circuits in contact sensitivity. II. Induction and characterization of an efferent-acting, antigen-specific, H-2-restricted, monoclonal T cell hybrid-derived suppressor factor specific for DNFB contact hypersensitivity.
    Miller SD
    J Immunol; 1984 Dec; 133(6):3112-20. PubMed ID: 6208271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Murine IgA binding factors (IgA-BF) suppressing IgA production: characterization and target specificity of IgA-BF.
    Noro N; Adachi M; Yasuda K; Masuda T; Yodoi J
    J Immunol; 1986 Apr; 136(8):2910-6. PubMed ID: 3514749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and initial characterization of concanavalin A- and interferon-induced human suppressor factors: evidence for a human equivalent of murine soluble immune response suppressor (SIRS).
    Schnaper HW; Pierce CW; Aune TM
    J Immunol; 1984 May; 132(5):2429-35. PubMed ID: 6232318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and biochemical analysis of antigen-specific suppressor factors obtained from the supernatant, membrane, or cytosol of a T cell hybridoma.
    Healy CT; Kapp JA; Webb DR
    J Immunol; 1983 Dec; 131(6):2843-7. PubMed ID: 6196403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial purification and biochemical characterization of a T cell suppressor factor produced by human glioblastoma cells.
    Schwyzer M; Fontana A
    J Immunol; 1985 Feb; 134(2):1003-9. PubMed ID: 3871205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antigen-specific suppressor T cell interactions. I. Induction of an MHC-restricted suppressor factor specific for L-glutamic acid50-L-tyrosine50.
    Kapp JA; Araneo BA
    J Immunol; 1982 Jun; 128(6):2447-52. PubMed ID: 6176635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology of mixed leukocyte reaction suppressor factor. I. Role of cytoskeleton and protein synthesis in production and secretion.
    Belmont JW; Rich RR; Rich SS
    J Immunol; 1979 Mar; 122(3):1022-8. PubMed ID: 156208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and antigenic requirements for production of mixed leukocyte reaction suppressor factor.
    Dennison DK; Rich SS; Rich RR
    J Immunol; 1981 Nov; 127(5):2176-82. PubMed ID: 6457865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of monoclonal antibodies reactive with porcine PBL.
    Pescovitz MD; Lunney JK; Sachs DH
    J Immunol; 1984 Jul; 133(1):368-75. PubMed ID: 6609988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of a low molecular weight helper factor(s) with thymocyte proliferative activity.
    Koopman WJ; Farrar JJ; Oppenheim JJ; Fuller-Bonar J; Dougherty S
    J Immunol; 1977 Jul; 119(1):55-60. PubMed ID: 301539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro analysis of allogeneic lymphocyte interaction. VI. I-J-restricted self-reactive and alloreactive components of allogeneic effect factor (AEF) are distinct I-J- molecules that interact with I-J+ T cells and antigen-presenting cells.
    Delovitch TL; Kaufman K; Gorczynski RM
    J Immunol; 1983 May; 130(5):2241-9. PubMed ID: 6220086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of T cell responses in nonresponder mice by abolishing suppression with monoclonal antibodies recognizing A region-controlled, T cell-specific determinants.
    Ikezawa Z; Nonaka M; Abe R; Tada T; Nagy ZA; Klein J
    J Immunol; 1983 Oct; 131(4):1646-9. PubMed ID: 6194210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.