These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31597972)

  • 1. Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents.
    Gökçe O; Castonguay S; Temiz Y; Gervais T; Delamarche E
    Nature; 2019 Oct; 574(7777):228-232. PubMed ID: 31597972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Dried Reagent Reconstitution and Diffusion Control Using Microfluidic Self-Coalescence Modules.
    Gervais T; Temiz Y; Aubé L; Delamarche E
    Small; 2022 Apr; 18(16):e2105939. PubMed ID: 35307960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A portable all-in-one microfluidic device with real-time colorimetric LAMP for HPV16 and HPV18 DNA point-of-care testing.
    Bai H; Liu Y; Gao L; Wang T; Zhang X; Hu J; Ding L; Zhang Y; Wang Q; Wang L; Li J; Zhang Z; Wang Y; Shen C; Ying B; Niu X; Hu W
    Biosens Bioelectron; 2024 Mar; 248():115968. PubMed ID: 38150799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled release of reagents in capillary-driven microfluidics using reagent integrators.
    Hitzbleck M; Gervais L; Delamarche E
    Lab Chip; 2011 Aug; 11(16):2680-5. PubMed ID: 21674120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex Nucleic Acid Hybridization Reactions inside Capillary-Driven Microfluidic Chips.
    Salva ML; Rocca M; Hu Y; Delamarche E; Niemeyer CM
    Small; 2020 Dec; 16(49):e2005476. PubMed ID: 33201612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.
    Mauk MG; Liu C; Qiu X; Chen D; Song J; Bau HH
    Methods Mol Biol; 2017; 1572():467-488. PubMed ID: 28299706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volumeless reagent delivery: a liquid handling method for adding reagents to microscale droplets without increasing volume.
    Juang DS; Lang JM; Beebe DJ
    Lab Chip; 2022 Jan; 22(2):286-295. PubMed ID: 34897347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using bioinspired thermally triggered liposomes for high-efficiency mixing and reagent delivery in microfluidic devices.
    Vreeland WN; Locascio LE
    Anal Chem; 2003 Dec; 75(24):6906-11. PubMed ID: 14670052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Fabrication of Capillary-Driven Flow Device for Point-Of-Care Diagnostics.
    Hassan SU; Zhang X
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32326641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transposing Lateral Flow Immunoassays to Capillary-Driven Microfluidics Using Self-Coalescence Modules and Capillary-Assembled Receptor Carriers.
    Hemmig E; Temiz Y; Gökçe O; Lovchik RD; Delamarche E
    Anal Chem; 2020 Jan; 92(1):940-946. PubMed ID: 31860276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for inward fluid displacement in centrifugal microdevices for highly integrated nucleic acid processing with long-term reagent storage.
    Dignan LM; Karas SM; Mighell IK; Treene WR; Landers JP; Woolf MS
    Anal Chim Acta; 2022 Aug; 1221():340063. PubMed ID: 35934337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SlipChip Device for Digital Nucleic Acid Amplification.
    Shen F
    Methods Mol Biol; 2017; 1547():123-132. PubMed ID: 28044292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid paper and microfluidic chip with electrowetting valves and colorimetric detection.
    He F; Grimes J; Alcaine SD; Nugen SR
    Analyst; 2014 Jun; 139(12):3002-8. PubMed ID: 24719901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic tool box as technology platform for hand-held diagnostics.
    Pugia MJ; Blankenstein G; Peters RP; Profitt JA; Kadel K; Willms T; Sommer R; Kuo HH; Schulman LS
    Clin Chem; 2005 Oct; 51(10):1923-32. PubMed ID: 16055433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.
    Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF
    Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Powered Microfluidics for Point-of-Care Solutions: From Sampling to Detection of Proteins and Nucleic Acids.
    Vloemans D; Van Hileghem L; Ordutowski H; Dal Dosso F; Spasic D; Lammertyn J
    Methods Mol Biol; 2024; 2804():3-50. PubMed ID: 38753138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A power-free, parallel loading microfluidic reactor array for biochemical screening.
    Liu Y; Li G
    Sci Rep; 2018 Sep; 8(1):13664. PubMed ID: 30209328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.