BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31598058)

  • 41. A green wave of saltmarsh productivity predicts the timing of the annual cycle in a long-distance migratory shorebird.
    Smith JAM; Regan K; Cooper NW; Johnson L; Olson E; Green A; Tash J; Evers DC; Marra PP
    Sci Rep; 2020 Nov; 10(1):20658. PubMed ID: 33244082
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vertebrate Phenological Plasticity: From Molecular Mechanisms to Ecological and Evolutionary Implications.
    Aubry LM; Williams CT
    Integr Comp Biol; 2022 Oct; 62(4):958-971. PubMed ID: 35867980
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatio-temporal changes of winter and spring phytoplankton blooms in Arabian sea during the period 1997-2020.
    Anjaneyan P; Kuttippurath J; Hareesh Kumar PV; Ali SM; Raman M
    J Environ Manage; 2023 Apr; 332():117435. PubMed ID: 36746044
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changing Hydrographic, Biogeochemical, and Acidification Properties in the Gulf of Maine as Measured by the Gulf of Maine North Atlantic Time Series, GNATS, Between 1998 and 2018.
    Balch WM; Drapeau DT; Bowler BC; Record NR; Bates NR; Pinkham S; Garley R; Mitchell C
    J Geophys Res Biogeosci; 2022 Jun; 127(6):e2022JG006790. PubMed ID: 35865236
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Species- and community-level responses combine to drive phenology of lake phytoplankton.
    Walters AW; González Sagrario Mde L; Schindler DE
    Ecology; 2013 Oct; 94(10):2188-94. PubMed ID: 24358705
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Forecasting phenology under global warming.
    Ibáñez I; Primack RB; Miller-Rushing AJ; Ellwood E; Higuchi H; Lee SD; Kobori H; Silander JA
    Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1555):3247-60. PubMed ID: 20819816
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring and modelling marine zooplankton in a changing climate.
    Ratnarajah L; Abu-Alhaija R; Atkinson A; Batten S; Bax NJ; Bernard KS; Canonico G; Cornils A; Everett JD; Grigoratou M; Ishak NHA; Johns D; Lombard F; Muxagata E; Ostle C; Pitois S; Richardson AJ; Schmidt K; Stemmann L; Swadling KM; Yang G; Yebra L
    Nat Commun; 2023 Feb; 14(1):564. PubMed ID: 36732509
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phenological responses of 215 moth species to interannual climate variation in the Pacific Northwest from 1895 through 2013.
    Maurer JA; Shepard JH; Crabo LG; Hammond PC; Zack RS; Peterson MA
    PLoS One; 2018; 13(9):e0202850. PubMed ID: 30208046
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phenological sensitivity and seasonal variability explain climate-driven trends in Mediterranean butterflies.
    Colom P; Ninyerola M; Pons X; Traveset A; Stefanescu C
    Proc Biol Sci; 2022 Apr; 289(1973):20220251. PubMed ID: 35473386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Six decades of North American bird banding records reveal plasticity in migration phenology.
    Horton KG; Morris SR; Van Doren BM; Covino KM
    J Anim Ecol; 2023 Mar; 92(3):738-750. PubMed ID: 36655993
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phenological changes in the southern hemisphere.
    Chambers LE; Altwegg R; Barbraud C; Barnard P; Beaumont LJ; Crawford RJ; Durant JM; Hughes L; Keatley MR; Low M; Morellato PC; Poloczanska ES; Ruoppolo V; Vanstreels RE; Woehler EJ; Wolfaardt AC
    PLoS One; 2013; 8(10):e75514. PubMed ID: 24098389
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Decadal migration phenology of a long-lived Arctic icon keeps pace with climate change.
    Shuert CR; Marcoux M; Hussey NE; Heide-Jørgensen MP; Dietz R; Auger-Méthé M
    Proc Natl Acad Sci U S A; 2022 Nov; 119(45):e2121092119. PubMed ID: 36279424
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The annual cycles of phytoplankton biomass.
    Winder M; Cloern JE
    Philos Trans R Soc Lond B Biol Sci; 2010 Oct; 365(1555):3215-26. PubMed ID: 20819814
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Northern shrimp Pandalus borealis population collapse linked to climate-driven shifts in predator distribution.
    Richards RA; Hunter M
    PLoS One; 2021; 16(7):e0253914. PubMed ID: 34288940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA.
    Pearson KD
    Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Variability in spring phytoplankton blooms associated with ice retreat timing in the Pacific Arctic from 2003-2019.
    Waga H; Eicken H; Hirawake T; Fukamachi Y
    PLoS One; 2021; 16(12):e0261418. PubMed ID: 34914776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flowering time advances since the 1970s in a sagebrush steppe community: Implications for management and restoration.
    Bloom TDS; O'Leary DS; Riginos C
    Ecol Appl; 2022 Sep; 32(6):e2583. PubMed ID: 35333428
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation.
    Hauser DDW; Laidre KL; Stafford KM; Stern HL; Suydam RS; Richard PR
    Glob Chang Biol; 2017 Jun; 23(6):2206-2217. PubMed ID: 28001336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sea ice phenology and timing of primary production pulses in the Arctic Ocean.
    Ji R; Jin M; Varpe Ø
    Glob Chang Biol; 2013 Mar; 19(3):734-41. PubMed ID: 23504831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.