These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31598225)

  • 1. Cranial ontogeny of
    Strong CRC; Simões TR; Caldwell MW; Doschak MR
    R Soc Open Sci; 2019 Aug; 6(8):182228. PubMed ID: 31598225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into skull evolution in fossorial snakes, as revealed by the cranial morphology of Atractaspis irregularis (Serpentes: Colubroidea).
    Strong CRC; Palci A; Caldwell MW
    J Anat; 2021 Jan; 238(1):146-172. PubMed ID: 32815172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development of the skull of Dinilysia patagonica (Squamata-stem Serpentes).
    Scanferla A; Bhullar BA
    Anat Rec (Hoboken); 2014 Mar; 297(3):560-73. PubMed ID: 24493375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postnatal ontogeny and the evolution of macrostomy in snakes.
    Scanferla A
    R Soc Open Sci; 2016 Nov; 3(11):160612. PubMed ID: 28018652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by micro-CT scan data and three-dimensional geometric morphometrics.
    Palci A; Lee MS; Hutchinson MN
    J Anat; 2016 Dec; 229(6):723-754. PubMed ID: 27329823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs.
    Foth C; Hedrick BP; Ezcurra MD
    PeerJ; 2016; 4():e1589. PubMed ID: 26839749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal heterochrony is associated with the anatomical specializations of snakes among squamate reptiles.
    Werneburg I; Sánchez-Villagra MR
    Evolution; 2015 Jan; 69(1):254-63. PubMed ID: 25355076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The upper cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and the crista circumfenestralis of snakes.
    Palci A; Caldwell MW
    J Morphol; 2014 Oct; 275(10):1187-200. PubMed ID: 24898898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryonic development and cranial ossification of the Japanese Aodaishō, Elaphe climacophora (Serpentes: Colubridae): with special reference to the prootic bone and auditory evolution in snakes.
    Nojiri T; Werneburg I; Sakai A; Furutera T; Negishi-Koga T; Ishijima M; Ichimura K; Takechi M
    Anat Rec (Hoboken); 2024 Jul; ():. PubMed ID: 38992983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergence, divergence, and macroevolutionary constraint as revealed by anatomical network analysis of the squamate skull, with an emphasis on snakes.
    Strong CRC; Scherz MD; Caldwell MW
    Sci Rep; 2022 Aug; 12(1):14469. PubMed ID: 36008512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology of the lower jaw and suspensorium in the Texas blindsnake, Leptotyphlops dulcis (Scolecophidia: Leptotyphlopidae).
    Kley NJ
    J Morphol; 2006 Apr; 267(4):494-515. PubMed ID: 16429440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deconstructing the Gestalt: New concepts and tests of homology, as exemplified by a re-conceptualization of "microstomy" in squamates.
    Strong CRC; Scherz MD; Caldwell MW
    Anat Rec (Hoboken); 2021 Oct; 304(10):2303-2351. PubMed ID: 33871920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of the skull in Acrochordus granulatus (Schneider) (Reptilia: Serpentes), with special consideration of the otico-occipital complex.
    Rieppel O; Zaher H
    J Morphol; 2001 Sep; 249(3):252-66. PubMed ID: 11517468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryonic development of skull bones in the Sahara horned viper (Cerastes cerastes), with new insights into structures related to the basicranium and braincase roof.
    Khannoon ER; Ollonen J; Di-Poï N
    J Anat; 2020 Jul; 237(1):1-19. PubMed ID: 32242931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paedomorphosis and retention of juvenile diet lead speciation in a group of Neotropical snakes (Colubroides-Philodryadini).
    Chuliver M; Scanferla A
    Sci Rep; 2024 May; 14(1):10071. PubMed ID: 38698134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Snake phylogeny based on osteology, soft anatomy and ecology.
    Lee MS; Scanlon JD
    Biol Rev Camb Philos Soc; 2002 Aug; 77(3):333-401. PubMed ID: 12227520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phylogenetic approach to ontogeny and heterochrony in the fossil record: cranial evolution and development in anguimorphan lizards (Reptilia: Squamata).
    Bhullar BA
    J Exp Zool B Mol Dev Evol; 2012 Nov; 318(7):521-30. PubMed ID: 23081909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogenetic prey size selection in snakes: predator size and functional limitations to handling minimum prey sizes.
    Hampton PM
    Zoology (Jena); 2018 Feb; 126():103-109. PubMed ID: 29203088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptations and significance of the cranial feeding apparatus of the sunbeam snake (Xenopeltis unicolor): Part I. Anatomy of the skull.
    Frazzetta TH
    J Morphol; 1999 Jan; 239(1):27-43. PubMed ID: 29847873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative cranial ontogeny of Tapirus (Mammalia: Perissodactyla: Tapiridae).
    Moyano SR; Giannini NP
    J Anat; 2017 Nov; 231(5):665-682. PubMed ID: 28736808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.