These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 31598280)
1. The guiding role of pre-coking on the coke deposition over ZSM-5 in methanol to propylene. Wang L; Qi J; Jiao H; An L; Guan C; Yong X; Jin Z; Zhang A; Liu D R Soc Open Sci; 2019 Sep; 6(9):190218. PubMed ID: 31598280 [TBL] [Abstract][Full Text] [Related]
2. Effects of Desilication in NaOH/Piperidine Medium and Phosphorus Modification on the Catalytic Activity of HZSM-5 Catalyst in Methanol to Propylene Conversion. Safaei E; Taghizadeh M Comb Chem High Throughput Screen; 2021; 24(4):546-558. PubMed ID: 32664835 [TBL] [Abstract][Full Text] [Related]
3. Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Yarulina I; De Wispelaere K; Bailleul S; Goetze J; Radersma M; Abou-Hamad E; Vollmer I; Goesten M; Mezari B; Hensen EJM; Martínez-Espín JS; Morten M; Mitchell S; Perez-Ramirez J; Olsbye U; Weckhuysen BM; Van Speybroeck V; Kapteijn F; Gascon J Nat Chem; 2018 Aug; 10(8):804-812. PubMed ID: 29941905 [TBL] [Abstract][Full Text] [Related]
4. Coke formation during the methanol-to-olefin conversion: in situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity. Mores D; Kornatowski J; Olsbye U; Weckhuysen BM Chemistry; 2011 Mar; 17(10):2874-84. PubMed ID: 21305622 [TBL] [Abstract][Full Text] [Related]
5. Microwaves effectively examine the extent and type of coking over acid zeolite catalysts. Liu B; Slocombe DR; Wang J; Aldawsari A; Gonzalez-Cortes S; Arden J; Kuznetsov VL; AlMegren H; AlKinany M; Xiao T; Edwards PP Nat Commun; 2017 Sep; 8(1):514. PubMed ID: 28894113 [TBL] [Abstract][Full Text] [Related]
6. Effect of Steam Deactivation Severity of ZSM-5 Additives on LPG Olefins Production in the FCC Process. Gusev AA; Psarras AC; Triantafyllidis KS; Lappas AA; Diddams PA Molecules; 2017 Oct; 22(10):. PubMed ID: 29065480 [TBL] [Abstract][Full Text] [Related]
7. Ultrasound-assisted rapid hydrothermal design of efficient nanostructured MFI-Type aluminosilicate catalyst for methanol to propylene reaction. Sadeghpour P; Haghighi M; Ebrahimi A Ultrason Sonochem; 2021 Apr; 72():105416. PubMed ID: 33360534 [TBL] [Abstract][Full Text] [Related]
8. Identifying the effective phosphorous species over modified P-ZSM-5 zeolite: a theoretical study. Chu Y; Gao X; Zhang X; Xu G; Li G; Zheng A Phys Chem Chem Phys; 2018 May; 20(17):11702-11712. PubMed ID: 29683160 [TBL] [Abstract][Full Text] [Related]
9. Space- and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34. Mores D; Stavitski E; Kox MH; Kornatowski J; Olsbye U; Weckhuysen BM Chemistry; 2008; 14(36):11320-7. PubMed ID: 19021162 [TBL] [Abstract][Full Text] [Related]
10. Fluoride-Treated Nano-HZSM-5 Zeolite as a Highly Stable Catalyst for the Conversion of Bioethanol to Propylene. Zhou J; Zhang N; Meng T; Guo Q; Xue Z; Mao D Nanomaterials (Basel); 2024 Sep; 14(19):. PubMed ID: 39404286 [TBL] [Abstract][Full Text] [Related]
11. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5. Zhang H; Luo M; Xiao R; Shao S; Jin B; Xiao G; Zhao M; Liang J Bioresour Technol; 2014 Mar; 155():57-62. PubMed ID: 24413482 [TBL] [Abstract][Full Text] [Related]
12. Synergistic interaction of metal loaded multifactorial nanocatalysts over bifunctional transalkylation for environmental applications. Altındaş C; Sher F; Smječanin N; Lima EC; Rashid T; Hai IU; Karaduman A Environ Res; 2023 Jan; 216(Pt 1):114479. PubMed ID: 36208784 [TBL] [Abstract][Full Text] [Related]
13. Immobilizing Polyether Imidazole Ionic Liquids on ZSM-5 Zeolite for the Catalytic Synthesis of Propylene Carbonate from Carbon Dioxide. Guo L; Jin X; Wang X; Yin L; Wang Y; Yang YW Molecules; 2018 Oct; 23(10):. PubMed ID: 30347858 [TBL] [Abstract][Full Text] [Related]
14. Bioethanol Conversion into Propylene over Various Zeolite Catalysts: Reaction Optimization and Catalyst Deactivation. Xia W; Ma C; Huang Y; Li S; Wang X; Chen K; Liu D Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014611 [TBL] [Abstract][Full Text] [Related]
15. Structural/Texture Evolution During Facile Substitution of Ni into ZSM-5 Nanostructure vs. its Impregnation Dispersion Used in Selective Transformation of Methanol to Ethylene and Propylene. Sadeghpour P; Haghighi M; Esmaeili M Comb Chem High Throughput Screen; 2021; 24(4):490-508. PubMed ID: 32842938 [TBL] [Abstract][Full Text] [Related]
16. Conversion of Methanol to Para-Xylene over ZSM-5 Zeolites Modified by Zinc and Phosphorus. Bai Y; Niu X; Du YE; Chen Y Molecules; 2023 Jun; 28(13):. PubMed ID: 37446553 [TBL] [Abstract][Full Text] [Related]
18. Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity. Zhou J; Gao M; Zhang J; Liu W; Zhang T; Li H; Xu Z; Ye M; Liu Z Nat Commun; 2021 Jan; 12(1):17. PubMed ID: 33397957 [TBL] [Abstract][Full Text] [Related]
19. Combining quasielastic neutron scattering and molecular dynamics to study methane motions in ZSM-5. Hawkins AP; Zachariou A; Silverwood IP; Yong C; Collier P; Todorov I; Howe RF; Parker SF; Lennon D J Chem Phys; 2022 Nov; 157(18):184702. PubMed ID: 36379785 [TBL] [Abstract][Full Text] [Related]
20. Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. Bleken F; Skistad W; Barbera K; Kustova M; Bordiga S; Beato P; Lillerud KP; Svelle S; Olsbye U Phys Chem Chem Phys; 2011 Feb; 13(7):2539-49. PubMed ID: 21152553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]