These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31598380)

  • 1. Developing a low-cost milliliter-scale chemostat array for precise control of cellular growth.
    Skelding D; Hart SFM; Vidyasagar T; Pozhitkov AE; Shou W
    Quant Biol; 2018 Jun; 6(2):129-141. PubMed ID: 31598380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae.
    Lis AV; Schneider K; Weber J; Keasling JD; Jensen MK; Klein T
    Microb Cell Fact; 2019 Mar; 18(1):50. PubMed ID: 30857529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and use of multiplexed chemostat arrays.
    Miller AW; Befort C; Kerr EO; Dunham MJ
    J Vis Exp; 2013 Feb; (72):e50262. PubMed ID: 23462663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional basis of adaptive evolution in chemostats.
    Gresham D; Hong J
    FEMS Microbiol Rev; 2015 Jan; 39(1):2-16. PubMed ID: 25098268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.
    Schmideder A; Severin TS; Cremer JH; Weuster-Botz D
    J Biotechnol; 2015 Sep; 210():19-24. PubMed ID: 26116137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesostats-A multiplexed, low-cost, do-it-yourself continuous culturing system for experimental evolution of mesocosms.
    Hansson EM; Childs DZ; Beckerman AP
    PLoS One; 2022; 17(7):e0272052. PubMed ID: 35901067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and Validation of A Low-cost, Small-scale, Multiplex Continuous Culturing System for Microorganisms.
    Tonoyan L; Guihéneuf F; Friel R; O'Flaherty V
    Bio Protoc; 2020 Nov; 10(21):e3813. PubMed ID: 33659466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The apparent clock-like evolution of Escherichia coli in glucose-limited chemostats is reproducible at large but not at small population sizes and can be explained with Monod kinetics.
    Wick LM; Weilenmann H; Egli T
    Microbiology (Reading); 2002 Sep; 148(Pt 9):2889-2902. PubMed ID: 12213934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexed chemostat system for quantification of biodiversity and ecosystem functioning in anaerobic digestion.
    Plouchart D; Milferstedt K; Guizard G; Latrille E; Hamelin J
    PLoS One; 2018; 13(3):e0193748. PubMed ID: 29518106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of growth rate and nutrient limitation on the microbial composition and biochemical properties of a mixed culture of oral bacteria grown in a chemostat.
    Marsh PD; Hunter JR; Bowden GH; Hamilton IR; McKee AS; Hardie JM; Ellwood DC
    J Gen Microbiol; 1983 Mar; 129(3):755-70. PubMed ID: 6348208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different adaptive strategies in E. coli populations evolving under macronutrient limitation and metal ion limitation.
    Warsi OM; Andersson DI; Dykhuizen DE
    BMC Evol Biol; 2018 May; 18(1):72. PubMed ID: 29776341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemostat Culture for Yeast Physiology and Experimental Evolution.
    Dunham MJ; Kerr EO; Miller AW; Payen C
    Cold Spring Harb Protoc; 2017 Jul; 2017(7):pdb.top077610. PubMed ID: 28679718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial physiology, regulation and mutational adaptation in a chemostat environment.
    Ferenci T
    Adv Microb Physiol; 2008; 53():169-229. PubMed ID: 17707145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture.
    Withers JM; Swift RJ; Wiebe MG; Robson GD; Punt PJ; van den Hondel CA; Trinci AP
    Biotechnol Bioeng; 1998 Aug; 59(4):407-18. PubMed ID: 10099354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of chemostats in microbial systems biology.
    Ziv N; Brandt NJ; Gresham D
    J Vis Exp; 2013 Oct; (80):. PubMed ID: 24145466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Changes in the physiologic properties of a chemostat culture of Propionibacterium shermanii during growth limitation by a deficiency of sodium lactate].
    Ibragimova SI; Shul'govskaia EM
    Mikrobiologiia; 1979; 48(6):1017-22. PubMed ID: 93687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Small-Volume, Low-Cost, and Versatile Continuous Culture Device.
    Matteau D; Baby V; Pelletier S; Rodrigue S
    PLoS One; 2015; 10(7):e0133384. PubMed ID: 26197065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemostat-based micro-array analysis in baker's yeast.
    Daran-Lapujade P; Daran JM; van Maris AJ; de Winde JH; Pronk JT
    Adv Microb Physiol; 2009; 54():257-311. PubMed ID: 18929070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.