These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31598455)

  • 1. High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide.
    You Y; Xing R; Zou Q; Shi F; Yan X
    Beilstein J Nanotechnol; 2019; 10():1894-1901. PubMed ID: 31598455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-Benzyl cysteine based cyclic dipeptide super hydrogelator: Enhancing efficacy of an anticancer drug via sustainable release.
    Ghosh S; Nag S; Saha KD; Banerji B
    J Pept Sci; 2022 Aug; 28(8):e3403. PubMed ID: 35001443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dipeptide-polysaccharides hydrogels through co-assembly.
    Hu T; Xu Y; Xu G
    Food Chem; 2023 Oct; 422():136272. PubMed ID: 37141751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Investigation of Backbone Modified Squaramide Dipeptide Self-Assembly.
    Shinde SD; Kulkarni N; Sahu B
    ACS Appl Bio Mater; 2023 Feb; 6(2):507-518. PubMed ID: 36716238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-Selected C
    Hu T; Xu Y; Xu G; Pan S
    J Agric Food Chem; 2022 Jun; 70(23):7148-7157. PubMed ID: 35657010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable self-assembled bola-dipeptide hydrogels for sustained photodynamic prodrug delivery and enhanced tumor therapy.
    Zou Q; Chang R; Xing R; Yuan C; Yan X
    J Control Release; 2020 Mar; 319():344-351. PubMed ID: 31917297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response.
    Xing R; Li S; Zhang N; Shen G; Möhwald H; Yan X
    Biomacromolecules; 2017 Nov; 18(11):3514-3523. PubMed ID: 28721731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembly Dipeptide Hydrogel: The Structures and Properties.
    Li L; Xie L; Zheng R; Sun R
    Front Chem; 2021; 9():739791. PubMed ID: 34540806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Peptide-Based Supramolecular Hydrogel for Controlled Delivery of Amine Drugs.
    Wang Y; Zhang Y; Li X; Li C; Yang Z; Wang L
    Chem Asian J; 2018 Nov; 13(22):3460-3463. PubMed ID: 29882291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Mechanical Rigidity of Hyaluronic Acid by Integration of a Supramolecular Peptide Matrix.
    Aviv M; Halperin-Sternfeld M; Grigoriants I; Buzhansky L; Mironi-Harpaz I; Seliktar D; Einav S; Nevo Z; Adler-Abramovich L
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):41883-41891. PubMed ID: 30211538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels.
    Frederix PW; Scott GG; Abul-Haija YM; Kalafatovic D; Pappas CG; Javid N; Hunt NT; Ulijn RV; Tuttle T
    Nat Chem; 2015 Jan; 7(1):30-7. PubMed ID: 25515887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Facile and Versatile Approach to Construct Photoactivated Peptide Hydrogels by Regulating Electrostatic Repulsion.
    Xiang Y; Mao H; Tong SC; Liu C; Yan R; Zhao L; Zhu L; Bao C
    ACS Nano; 2023 Mar; 17(6):5536-5547. PubMed ID: 36892586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Self-Assembly of Cyclic Dipeptide Derivatives and Their Applications.
    Manchineella S; Govindaraju T
    Chempluschem; 2017 Jan; 82(1):88-106. PubMed ID: 31961506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effects of a Short Self-Assembling Peptide on the Physical and Biological Properties of Biopolymer Hydrogels.
    Chowdhuri S; Ghosh M; Adler-Abramovich L; Das D
    Pharmaceutics; 2021 Oct; 13(10):. PubMed ID: 34683894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures.
    Chibh S; Mishra J; Kour A; Chauhan VS; Panda JJ
    Nanomedicine (Lond); 2021 Jan; 16(2):139-163. PubMed ID: 33480272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy.
    Yang M; Yuan C; Shen G; Chang R; Xing R; Yan X
    J Colloid Interface Sci; 2019 Dec; 557():458-464. PubMed ID: 31539842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic Dipeptide-Based Ambidextrous Supergelators: Minimalistic Rational Design, Structure-Gelation Studies, and In Situ Hydrogelation.
    Manchineella S; Murugan NA; Govindaraju T
    Biomacromolecules; 2017 Nov; 18(11):3581-3590. PubMed ID: 28856890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-based supramolecular hydrogels for local drug delivery.
    Zhang Z; Ai S; Yang Z; Li X
    Adv Drug Deliv Rev; 2021 Jul; 174():482-503. PubMed ID: 34015417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features.
    Li F; Han J; Cao T; Lam W; Fan B; Tang W; Chen S; Fok KL; Li L
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11259-11264. PubMed ID: 31110004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.