BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31598455)

  • 1. High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide.
    You Y; Xing R; Zou Q; Shi F; Yan X
    Beilstein J Nanotechnol; 2019; 10():1894-1901. PubMed ID: 31598455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-Benzyl cysteine based cyclic dipeptide super hydrogelator: Enhancing efficacy of an anticancer drug via sustainable release.
    Ghosh S; Nag S; Saha KD; Banerji B
    J Pept Sci; 2022 Aug; 28(8):e3403. PubMed ID: 35001443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dipeptide-polysaccharides hydrogels through co-assembly.
    Hu T; Xu Y; Xu G
    Food Chem; 2023 Oct; 422():136272. PubMed ID: 37141751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Investigation of Backbone Modified Squaramide Dipeptide Self-Assembly.
    Shinde SD; Kulkarni N; Sahu B
    ACS Appl Bio Mater; 2023 Feb; 6(2):507-518. PubMed ID: 36716238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-Selected C
    Hu T; Xu Y; Xu G; Pan S
    J Agric Food Chem; 2022 Jun; 70(23):7148-7157. PubMed ID: 35657010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable self-assembled bola-dipeptide hydrogels for sustained photodynamic prodrug delivery and enhanced tumor therapy.
    Zou Q; Chang R; Xing R; Yuan C; Yan X
    J Control Release; 2020 Mar; 319():344-351. PubMed ID: 31917297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response.
    Xing R; Li S; Zhang N; Shen G; Möhwald H; Yan X
    Biomacromolecules; 2017 Nov; 18(11):3514-3523. PubMed ID: 28721731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembly Dipeptide Hydrogel: The Structures and Properties.
    Li L; Xie L; Zheng R; Sun R
    Front Chem; 2021; 9():739791. PubMed ID: 34540806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Peptide-Based Supramolecular Hydrogel for Controlled Delivery of Amine Drugs.
    Wang Y; Zhang Y; Li X; Li C; Yang Z; Wang L
    Chem Asian J; 2018 Nov; 13(22):3460-3463. PubMed ID: 29882291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Mechanical Rigidity of Hyaluronic Acid by Integration of a Supramolecular Peptide Matrix.
    Aviv M; Halperin-Sternfeld M; Grigoriants I; Buzhansky L; Mironi-Harpaz I; Seliktar D; Einav S; Nevo Z; Adler-Abramovich L
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):41883-41891. PubMed ID: 30211538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds.
    Zhang H; Park J; Jiang Y; Woodrow KA
    Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels.
    Frederix PW; Scott GG; Abul-Haija YM; Kalafatovic D; Pappas CG; Javid N; Hunt NT; Ulijn RV; Tuttle T
    Nat Chem; 2015 Jan; 7(1):30-7. PubMed ID: 25515887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Facile and Versatile Approach to Construct Photoactivated Peptide Hydrogels by Regulating Electrostatic Repulsion.
    Xiang Y; Mao H; Tong SC; Liu C; Yan R; Zhao L; Zhu L; Bao C
    ACS Nano; 2023 Mar; 17(6):5536-5547. PubMed ID: 36892586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Self-Assembly of Cyclic Dipeptide Derivatives and Their Applications.
    Manchineella S; Govindaraju T
    Chempluschem; 2017 Jan; 82(1):88-106. PubMed ID: 31961506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effects of a Short Self-Assembling Peptide on the Physical and Biological Properties of Biopolymer Hydrogels.
    Chowdhuri S; Ghosh M; Adler-Abramovich L; Das D
    Pharmaceutics; 2021 Oct; 13(10):. PubMed ID: 34683894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures.
    Chibh S; Mishra J; Kour A; Chauhan VS; Panda JJ
    Nanomedicine (Lond); 2021 Jan; 16(2):139-163. PubMed ID: 33480272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy.
    Yang M; Yuan C; Shen G; Chang R; Xing R; Yan X
    J Colloid Interface Sci; 2019 Dec; 557():458-464. PubMed ID: 31539842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic Dipeptide-Based Ambidextrous Supergelators: Minimalistic Rational Design, Structure-Gelation Studies, and In Situ Hydrogelation.
    Manchineella S; Murugan NA; Govindaraju T
    Biomacromolecules; 2017 Nov; 18(11):3581-3590. PubMed ID: 28856890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-based supramolecular hydrogels for local drug delivery.
    Zhang Z; Ai S; Yang Z; Li X
    Adv Drug Deliv Rev; 2021 Jul; 174():482-503. PubMed ID: 34015417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features.
    Li F; Han J; Cao T; Lam W; Fan B; Tang W; Chen S; Fok KL; Li L
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11259-11264. PubMed ID: 31110004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.