These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 31598464)
1. Reduced Faradaic Contributions and Fast Charging of Nanoporous Carbon Electrodes in a Concentrated Sodium Nitrate Aqueous Electrolyte for Supercapacitors. Abbas Q; Gollas B; Presser V Energy Technol (Weinh); 2019 Sep; 7(9):1900430. PubMed ID: 31598464 [TBL] [Abstract][Full Text] [Related]
2. Iodine Adsorption in Nanoporous Carbon to Fabricate Assimilated Battery Electrodes for Durable Hybrid Supercapacitors. Larasati LD; Supiyeva Z; Islam MT; Abbas Q Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063699 [TBL] [Abstract][Full Text] [Related]
3. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. Uralcan B; Uralcan IB ACS Appl Mater Interfaces; 2022 Apr; 14(14):16800-16808. PubMed ID: 35377144 [TBL] [Abstract][Full Text] [Related]
4. Impact of Faradaic Interlayer Confinement and Carbon-Centered Macrostructure Designs for Ion Capture and the Recovery of Elements. Patil R; Das DK; Dutta S Chemistry; 2023 Jul; 29(38):e202301117. PubMed ID: 37147877 [TBL] [Abstract][Full Text] [Related]
5. Microwave-modulated graded porous carbon for supercapacitors: Pore size matching and operating voltage expansion. Fu J; Chen Y; Ma R; Huang H; Luo J; Zheng H; Sun S J Colloid Interface Sci; 2024 Nov; 673():163-177. PubMed ID: 38871624 [TBL] [Abstract][Full Text] [Related]
6. Traditional salt-in-water electrolyte Sundaram MM; Appadoo D Dalton Trans; 2020 Aug; 49(33):11743-11755. PubMed ID: 32797136 [TBL] [Abstract][Full Text] [Related]
7. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes. Vatamanu J; Vatamanu M; Bedrov D ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979 [TBL] [Abstract][Full Text] [Related]
8. Tuning the Nanoporous Structure of Carbons Derived from the Composite of Cross-Linked Polymers for Charge Storage Applications. Barzegar F; Pavlenko V; Zahid M; Bello A; Xia X; Manyala N; Ozoemena KI; Abbas Q ACS Appl Energy Mater; 2021 Feb; 4(2):1763-1773. PubMed ID: 33644701 [TBL] [Abstract][Full Text] [Related]
9. In Situ Tracking of Partial Sodium Desolvation of Materials with Capacitive, Pseudocapacitive, and Battery-like Charge/Discharge Behavior in Aqueous Electrolytes. Srimuk P; Lee J; Budak Ö; Choi J; Chen M; Feng G; Prehal C; Presser V Langmuir; 2018 Nov; 34(44):13132-13143. PubMed ID: 30350685 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Carbon/Electrolyte Interface in Supercapacitors Operating in Highly Concentrated Aqueous Electrolytes. Neto C; Pham HTT; Omnée R; Canizarès A; Slodczyk A; Deschamps M; Raymundo-Piñero E ACS Appl Mater Interfaces; 2022 Oct; 14(39):44405-44418. PubMed ID: 36150165 [TBL] [Abstract][Full Text] [Related]
11. Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors. Prehal C; Koczwara C; Amenitsch H; Presser V; Paris O Nat Commun; 2018 Oct; 9(1):4145. PubMed ID: 30297775 [TBL] [Abstract][Full Text] [Related]
12. Intensified Energy Storage in High-Voltage Nanohybrid Supercapacitors Liu A; Zhang H; Xing C; Wang Y; Zhang J; Zhang X; Zhang S ACS Appl Mater Interfaces; 2021 May; 13(18):21349-21361. PubMed ID: 33905225 [TBL] [Abstract][Full Text] [Related]
13. Theory of water treatment by capacitive deionization with redox active porous electrodes. He F; Biesheuvel PM; Bazant MZ; Hatton TA Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915 [TBL] [Abstract][Full Text] [Related]
14. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Ma CY; Huang SC; Chou PH; Den W; Hou CH Chemosphere; 2016 Mar; 146():113-20. PubMed ID: 26714293 [TBL] [Abstract][Full Text] [Related]
15. A unique choline nitrate-based organo-aqueous electrolyte enables carbon/carbon supercapacitor operation in a wide temperature window (-40°C to 60°C). Supiyeva Z; Mansurov Z; Azat S; Abbas Q Front Chem; 2024; 12():1377144. PubMed ID: 38666046 [TBL] [Abstract][Full Text] [Related]
16. Biredox ionic liquids: new opportunities toward high performance supercapacitors. Bodin C; Mourad E; Zigah D; Le Vot S; Freunberger SA; Favier F; Fontaine O Faraday Discuss; 2018 Jan; 206():393-404. PubMed ID: 28936498 [TBL] [Abstract][Full Text] [Related]
17. Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors. Abbas Q; Fitzek H; Schröttner H; Dsoke S; Gollas B Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31623401 [TBL] [Abstract][Full Text] [Related]
18. Ti Koudahi MF; Frąckowiak E Small; 2024 May; 20(21):e2307165. PubMed ID: 38098311 [TBL] [Abstract][Full Text] [Related]
19. Understanding the electrochemistry of "water-in-salt" electrolytes: basal plane highly ordered pyrolytic graphite as a model system. Iamprasertkun P; Ejigu A; Dryfe RAW Chem Sci; 2020 Jun; 11(27):6978-6989. PubMed ID: 34122994 [TBL] [Abstract][Full Text] [Related]
20. Loofah-derived activated carbon supported on nickel foam (AC/Ni) electrodes for the electro-sorption of ammonium ion from aqueous solutions. Shih YJ; Dong CD; Huang YH; Huang CP Chemosphere; 2020 Mar; 242():125259. PubMed ID: 31896176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]