BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31598627)

  • 1. Blast Preconditioning Protects Retinal Ganglion Cells and Reveals Targets for Prevention of Neurodegeneration Following Blast-Mediated Traumatic Brian Injury.
    Harper MM; Woll AW; Evans LP; Delcau M; Akurathi A; Hedberg-Buenz A; Soukup DA; Boehme N; Hefti MM; Dutca LM; Anderson MG; Bassuk AG
    Invest Ophthalmol Vis Sci; 2019 Oct; 60(13):4159-4170. PubMed ID: 31598627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing the number and intensity of shock tube generated blast waves leads to earlier retinal ganglion cell dysfunction and regional cell death.
    Harper MM; Boehme NA; Dutca L; Navarro V
    Exp Eye Res; 2024 Feb; 239():109754. PubMed ID: 38113955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blast-Mediated Traumatic Brain Injury Exacerbates Retinal Damage and Amyloidosis in the APPswePSENd19e Mouse Model of Alzheimer's Disease.
    Harper MM; Hedberg-Buenz A; Herlein J; Abrahamson EE; Anderson MG; Kuehn MH; Kardon RH; Poolman P; Ikonomovic MD
    Invest Ophthalmol Vis Sci; 2019 Jun; 60(7):2716-2725. PubMed ID: 31247112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Retinal Ganglion Cell Response to Blast-Mediated Traumatic Brain Injury Is Genetic Background Dependent.
    Harper MM; Boehme N; Dutca LM; Anderson MG
    Invest Ophthalmol Vis Sci; 2021 Jun; 62(7):13. PubMed ID: 34106210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of Post-Traumatic Immune Response Using the IL-1 Receptor Antagonist Anakinra for Improved Visual Outcomes.
    Evans LP; Woll AW; Wu S; Todd BP; Hehr N; Hedberg-Buenz A; Anderson MG; Newell EA; Ferguson PJ; Mahajan VB; Harper MM; Bassuk AG
    J Neurotrauma; 2020 Jun; 37(12):1463-1480. PubMed ID: 32056479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex Does Not Influence Visual Outcomes After Blast-Mediated Traumatic Brain Injury but IL-1 Pathway Mutations Confer Partial Rescue.
    Evans LP; Boehme N; Wu S; Burghardt EL; Akurathi A; Todd BP; Newell EA; Ferguson PJ; Mahajan VB; Dutca LM; Harper MM; Bassuk AG
    Invest Ophthalmol Vis Sci; 2020 Oct; 61(12):7. PubMed ID: 33030508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune responses in mice after blast-mediated traumatic brain injury TBI autonomously contribute to retinal ganglion cell dysfunction and death.
    Harper MM; Gramlich OW; Elwood BW; Boehme NA; Dutca LM; Kuehn MH
    Exp Eye Res; 2022 Dec; 225():109272. PubMed ID: 36209837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Compound SA-2 is Neuroprotective in Animal Models of Retinal Ganglion Cell Death.
    Stankowska DL; Dibas A; Li L; Zhang W; Krishnamoorthy VR; Chavala SH; Nguyen TP; Yorio T; Ellis DZ; Acharya S
    Invest Ophthalmol Vis Sci; 2019 Jul; 60(8):3064-3073. PubMed ID: 31348824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury.
    Mohan K; Kecova H; Hernandez-Merino E; Kardon RH; Harper MM
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3440-50. PubMed ID: 23620426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243.
    Dutca LM; Stasheff SF; Hedberg-Buenz A; Rudd DS; Batra N; Blodi FR; Yorek MS; Yin T; Shankar M; Herlein JA; Naidoo J; Morlock L; Williams N; Kardon RH; Anderson MG; Pieper AA; Harper MM
    Invest Ophthalmol Vis Sci; 2014 Dec; 55(12):8330-41. PubMed ID: 25468886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of necroptosis in the retina in a repeated primary ocular blast injury mouse model.
    Thomas CN; Courtie E; Bernardo-Colón A; Essex G; Rex TS; Ahmed Z; Blanch RJ
    Exp Eye Res; 2020 Aug; 197():108102. PubMed ID: 32522477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonopathy precedes cell death in ocular damage mediated by blast exposure.
    Boehme NA; Hedberg-Buenz A; Tatro N; Bielecki M; Castonguay WC; Scheetz TE; Anderson MG; Dutca LM
    Sci Rep; 2021 Jun; 11(1):11774. PubMed ID: 34083587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kynurenic Acid Protects Against Ischemia/Reperfusion-Induced Retinal Ganglion Cell Death in Mice.
    Nahomi RB; Nam MH; Rankenberg J; Rakete S; Houck JA; Johnson GC; Stankowska DL; Pantcheva MB; MacLean PS; Nagaraj RH
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32151061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Repeat Exposure to Subthreshold Trauma Causes Synergistic Axonal Damage and Functional Deficits in the Visual Pathway in a Mouse Model.
    Vest V; Bernardo-Colón A; Watkins D; Kim B; Rex TS
    J Neurotrauma; 2019 May; 36(10):1646-1654. PubMed ID: 30451083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caspase-7: a critical mediator of optic nerve injury-induced retinal ganglion cell death.
    Choudhury S; Liu Y; Clark AF; Pang IH
    Mol Neurodegener; 2015 Aug; 10():40. PubMed ID: 26306916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The S1P1 receptor-selective agonist CYM-5442 protects retinal ganglion cells in endothelin-1 induced retinal ganglion cell loss.
    Blanco R; Martínez-Navarrete G; Valiente-Soriano FJ; Avilés-Trigueros M; Pérez-Rico C; Serrano-Puebla A; Boya P; Fernández E; Vidal-Sanz M; de la Villa P
    Exp Eye Res; 2017 Nov; 164():37-45. PubMed ID: 28827028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential phases of RGC axonal and somatic injury in EAE mice examined using DTI and OCT.
    Nishioka C; Liang HF; Barsamian B; Sun SW
    Mult Scler Relat Disord; 2019 Jan; 27():315-323. PubMed ID: 30469023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a conventional photocoagulator and a 3-ns pulse laser on preconditioning responses and retinal ganglion cell survival after optic nerve crush.
    Shibeeb O; Wood JP; Casson RJ; Chidlow G
    Exp Eye Res; 2014 Oct; 127():77-90. PubMed ID: 25057781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of inner retina dysfunction and progressive ganglion cell loss in a mouse model of glaucoma.
    Pérez de Lara MJ; Santano C; Guzmán-Aránguez A; Valiente-Soriano FJ; Avilés-Trigueros M; Vidal-Sanz M; de la Villa P; Pintor J
    Exp Eye Res; 2014 May; 122():40-9. PubMed ID: 24631335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative and Topographical Analysis of the Losses of Cone Photoreceptors and Retinal Ganglion Cells Under Taurine Depletion.
    Hadj-Saïd W; Froger N; Ivkovic I; Jiménez-López M; Dubus É; Dégardin-Chicaud J; Simonutti M; Quénol C; Neveux N; Villegas-Pérez MP; Agudo-Barriuso M; Vidal-Sanz M; Sahel JA; Picaud S; García-Ayuso D
    Invest Ophthalmol Vis Sci; 2016 Sep; 57(11):4692-703. PubMed ID: 27607415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.