These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31598847)

  • 21. [Implementing a relatively rigorous algorithm of dynamic EIT problem on the modified FEM model].
    Tang M; Dong X; Qin M; Wang Z; Fu F; Shi X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1998 Jun; 15(2):158-62. PubMed ID: 12548905
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FEM electrode refinement for electrical impedance tomography.
    Grychtol B; Adler A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6429-32. PubMed ID: 24111213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conservative Finite Element Modeling of EEG and MEG on Unstructured Grids.
    Yavich N; Koshev N; Malovichko M; Razorenova A; Fedorov M
    IEEE Trans Med Imaging; 2022 Mar; 41(3):647-656. PubMed ID: 34644251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Five-layer realistic finite element head models based on segmented computer tomography data].
    Zhang J; Wu W; Ying X; Yan D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Jun; 28(3):587-91. PubMed ID: 21774229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model.
    Lew S; Sliva DD; Choe MS; Grant PE; Okada Y; Wolters CH; Hämäläinen MS
    Neuroimage; 2013 Aug; 76():282-93. PubMed ID: 23531680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A realistic, accurate and fast source modeling approach for the EEG forward problem.
    Miinalainen T; Rezaei A; Us D; Nüßing A; Engwer C; Wolters CH; Pursiainen S
    Neuroimage; 2019 Jan; 184():56-67. PubMed ID: 30165251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method.
    Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS
    Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EEG and MEG data analysis in SPM8.
    Litvak V; Mattout J; Kiebel S; Phillips C; Henson R; Kilner J; Barnes G; Oostenveld R; Daunizeau J; Flandin G; Penny W; Friston K
    Comput Intell Neurosci; 2011; 2011():852961. PubMed ID: 21437221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of quasi-static magnetic reciprocity to finite element models of the MEG lead-field.
    Schimpf PH
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):2082-8. PubMed ID: 18018704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of blood vessels in high-resolution volume conductor head modeling of EEG.
    Fiederer LDJ; Vorwerk J; Lucka F; Dannhauer M; Yang S; Dümpelmann M; Schulze-Bonhage A; Aertsen A; Speck O; Wolters CH; Ball T
    Neuroimage; 2016 Mar; 128():193-208. PubMed ID: 26747748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D electric impedance tomography reconstruction on multi-core computing platforms.
    Borsic A; Hartov A; Paulsen KD; Manwaring P
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1175-7. PubMed ID: 19162874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Comparison between the hp-version of Finite Element Method with EIDORS for Electrical Impedance Tomography.
    Saeedizadeh N; Kermani S; Rabbani H
    J Med Signals Sens; 2011 Jul; 1(3):200-5. PubMed ID: 22606676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.
    Liao K; Zhu M; Ding L
    Comput Methods Programs Biomed; 2013 Aug; 111(2):376-88. PubMed ID: 23706527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Random location of multiple sparse priors for solving the MEG/EEG inverse problem.
    Lopez JD; Espinosa JJ; Barnes GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1534-7. PubMed ID: 23366195
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem.
    Baillet S; Garnero L
    IEEE Trans Biomed Eng; 1997 May; 44(5):374-85. PubMed ID: 9125822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Randomized Multiresolution Scanning in Focal and Fast E/MEG Sensing of Brain Activity with a Variable Depth.
    Rezaei A; Koulouri A; Pursiainen S
    Brain Topogr; 2020 Mar; 33(2):161-175. PubMed ID: 32076899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A 3D finite-difference BiCG iterative solver with the Fourier-Jacobi preconditioner for the anisotropic EIT/EEG forward problem.
    Turovets S; Volkov V; Zherdetsky A; Prakonina A; Malony AD
    Comput Math Methods Med; 2014; 2014():426902. PubMed ID: 24527060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Addressing the computational cost of large EIT solutions.
    Boyle A; Borsic A; Adler A
    Physiol Meas; 2012 May; 33(5):787-800. PubMed ID: 22531098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bayesian Algorithm Based Localization of EEG Recorded Electromagnetic Brain Activity.
    Jatoi MA; Kamel N; Musavi SHA; López JD
    Curr Med Imaging Rev; 2019; 15(2):184-193. PubMed ID: 31975664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.