These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31599887)

  • 1. Thermoelectric power factor of pure and doped ZnSb via DFT based defect calculations.
    Berche A; Jund P
    Phys Chem Chem Phys; 2019 Oct; 21(41):23056-23064. PubMed ID: 31599887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and experimental search for ZnSb-based thermoelectric materials.
    Niedziolka K; Pothin R; Rouessac F; Ayral RM; Jund P
    J Phys Condens Matter; 2014 Sep; 26(36):365401. PubMed ID: 25134519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First principles study of defect formation in thermoelectric zinc antimonide, β-Zn4Sb3.
    Faghaninia A; Lo CS
    J Phys Condens Matter; 2015 Apr; 27(12):125502. PubMed ID: 25757075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance and Stable (Ag, Cd)-Containing ZnSb Thermoelectric Compounds.
    Yang S; Deng T; Qiu P; Xing T; Cheng J; Jin Z; Li P; Shi X; Chen L
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35650510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoelectric Analysis of ZnSb Thin Films Prepared by ns-Pulsed Laser Deposition.
    Bellucci A; Mastellone M; Mezzi A; Kaciulis S; Polini R; Medici L; Trucchi DM
    J Nanosci Nanotechnol; 2017 Mar; 17(3):1564-570. PubMed ID: 29693353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Ab-Initio Determination of the Thermoelectric Properties of Half-Heusler NiTiSn: Crucial Role of Interstitial Ni Defects.
    Berche A; Jund P
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29789503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport Properties of CdSb Alloys with a Promising Thermoelectric Performance.
    Zhou B; Sun C; Wang X; Bu Z; Li W; Ang R; Pei Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27098-27103. PubMed ID: 31283881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First principles study on the electronic properties of Zn(64)Sb(64-x)Te(x) solid solution (x = 0, 2, 3, 4).
    Zhao JH; Han EJ; Liu TM; Zeng W
    Int J Mol Sci; 2011; 12(5):3162-9. PubMed ID: 21686176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies.
    Wei W; Chang C; Yang T; Liu J; Tang H; Zhang J; Li Y; Xu F; Zhang Z; Li JF; Tang G
    J Am Chem Soc; 2018 Jan; 140(1):499-505. PubMed ID: 29243922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression for an intermediate phase in ZnSb films by NiO-doping.
    Li C; Wang G; Qi D; Shi D; Zhang X; Wang H
    Sci Rep; 2017 Aug; 7(1):8644. PubMed ID: 28819172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alloying ZnS in the hexagonal phase to create high-performing transparent conducting materials.
    Faghaninia A; Bhatt KR; Lo CS
    Phys Chem Chem Phys; 2016 Aug; 18(32):22628-35. PubMed ID: 27477188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires.
    Wang C; Wang Y; Zhang G; Peng C; Yang G
    Phys Chem Chem Phys; 2014 Feb; 16(8):3771-6. PubMed ID: 24430004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substitutional and interstitial impurity p-type doping of thermoelectric Mg
    Hirayama N; Iida T; Sakamoto M; Nishio K; Hamada N
    Sci Technol Adv Mater; 2019; 20(1):160-172. PubMed ID: 30891103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated computational materials discovery of silver doped tin sulfide as a thermoelectric material.
    Bera C; Jacob S; Opahle I; Gunda NS; Chmielowski R; Dennler G; Madsen GK
    Phys Chem Chem Phys; 2014 Oct; 16(37):19894-9. PubMed ID: 25115284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic defect formation and the effect of transition metal doping on transport properties in a ductile thermoelectric material α-Ag
    Ngoc Nam H; Yamada R; Okumura H; Nguyen TQ; Suzuki K; Shinya H; Masago A; Fukushima T; Sato K
    Phys Chem Chem Phys; 2021 Apr; 23(16):9773-9784. PubMed ID: 33725034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-compensation in arsenic doping of CdTe.
    Ablekim T; Swain SK; Yin WJ; Zaunbrecher K; Burst J; Barnes TM; Kuciauskas D; Wei SH; Lynn KG
    Sci Rep; 2017 Jul; 7(1):4563. PubMed ID: 28676701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ga-Doping-Induced Carrier Tuning and Multiphase Engineering in n-type PbTe with Enhanced Thermoelectric Performance.
    Wang Z; Wang G; Wang R; Zhou X; Chen Z; Yin C; Tang M; Hu Q; Tang J; Ang R
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22401-22407. PubMed ID: 29893540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of Defects and Sb-Doping in the Thermoelectric Properties of Full-Heusler Fe
    Pallecchi I; Bilc DI; Pani M; Ricci F; Lemal S; Ghosez P; Marré D
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25722-25730. PubMed ID: 35618661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting the Role of Mg and Ba Doping on the Microstructure and Thermoelectric Properties of p-Type AgSbSe2.
    Liu Z; Shuai J; Geng H; Mao J; Feng Y; Zhao X; Meng X; He R; Cai W; Sui J
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23047-55. PubMed ID: 26434693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.