BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31600062)

  • 1. Repurposing Protein Degradation for Optogenetic Modulation of Protein Activities.
    Mondal P; Krishnamurthy VV; Sharum SR; Haack N; Zhou H; Cheng J; Yang J; Zhang K
    ACS Synth Biol; 2019 Nov; 8(11):2585-2592. PubMed ID: 31600062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted Protein Degradation through Fast Optogenetic Activation and Its Application to the Control of Cell Signaling.
    Ryan A; Liu J; Deiters A
    J Am Chem Soc; 2021 Jun; 143(24):9222-9229. PubMed ID: 34121391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical control of protein phosphatase function.
    Courtney TM; Deiters A
    Nat Commun; 2019 Sep; 10(1):4384. PubMed ID: 31558717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible optogenetic control of kinase activity during differentiation and embryonic development.
    Krishnamurthy VV; Khamo JS; Mei W; Turgeon AJ; Ashraf HM; Mondal P; Patel DB; Risner N; Cho EE; Yang J; Zhang K
    Development; 2016 Nov; 143(21):4085-4094. PubMed ID: 27697903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-translational regulation of the ERK phosphatase DUSP6/MKP3 by the mTOR pathway.
    Bermudez O; Marchetti S; Pagès G; Gimond C
    Oncogene; 2008 Jun; 27(26):3685-91. PubMed ID: 18223677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105.
    Beinke S; Robinson MJ; Hugunin M; Ley SC
    Mol Cell Biol; 2004 Nov; 24(21):9658-67. PubMed ID: 15485931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling Protein Activity and Degradation Using Blue Light.
    Lutz AP; Renicke C; Taxis C
    Methods Mol Biol; 2016; 1408():67-78. PubMed ID: 26965116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-transcriptional regulation of the DUSP6/MKP-3 phosphatase by MEK/ERK signaling and hypoxia.
    Bermudez O; Jouandin P; Rottier J; Bourcier C; Pagès G; Gimond C
    J Cell Physiol; 2011 Jan; 226(1):276-84. PubMed ID: 20665674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Context-specific flow through the MEK/ERK module produces cell- and ligand-specific patterns of ERK single and double phosphorylation.
    Iwamoto N; D'Alessandro LA; Depner S; Hahn B; Kramer BA; Lucarelli P; Vlasov A; Stepath M; Böhm ME; Deharde D; Damm G; Seehofer D; Lehmann WD; Klingmüller U; Schilling M
    Sci Signal; 2016 Feb; 9(413):ra13. PubMed ID: 26838549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic control of intracellular signaling pathways.
    Zhang K; Cui B
    Trends Biotechnol; 2015 Feb; 33(2):92-100. PubMed ID: 25529484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells.
    Baaske J; Gonschorek P; Engesser R; Dominguez-Monedero A; Raute K; Fischbach P; Müller K; Cachat E; Schamel WWA; Minguet S; Davies JA; Timmer J; Weber W; Zurbriggen MD
    Sci Rep; 2018 Oct; 8(1):15024. PubMed ID: 30301909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells.
    Chan DW; Liu VW; Tsao GS; Yao KM; Furukawa T; Chan KK; Ngan HY
    Carcinogenesis; 2008 Sep; 29(9):1742-50. PubMed ID: 18632752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live cell fluorescence imaging of T cell MEKK2: redistribution and activation in response to antigen stimulation of the T cell receptor.
    Schaefer BC; Ware MF; Marrack P; Fanger GR; Kappler JW; Johnson GL; Monks CR
    Immunity; 1999 Oct; 11(4):411-21. PubMed ID: 10549623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing photoswitchable MEK.
    Patel AL; Yeung E; McGuire SE; Wu AY; Toettcher JE; Burdine RD; Shvartsman SY
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25756-25763. PubMed ID: 31796593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caspase-3 cleavage of DUSP6/MKP3 at the interdomain region generates active MKP3 fragments that regulate ERK1/2 subcellular localization and function.
    Cejudo-Marín R; Tárrega C; Nunes-Xavier CE; Pulido R
    J Mol Biol; 2012 Jun; 420(1-2):128-38. PubMed ID: 22504224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic Delineation of Receptor Tyrosine Kinase Subcircuits in PC12 Cell Differentiation.
    Khamo JS; Krishnamurthy VV; Chen Q; Diao J; Zhang K
    Cell Chem Biol; 2019 Mar; 26(3):400-410.e3. PubMed ID: 30595532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modelling unveils the essential role of cellular phosphatases in the inhibition of RAF-MEK-ERK signalling by sorafenib in hepatocellular carcinoma cells.
    Saidak Z; Giacobbi AS; Louandre C; Sauzay C; Mammeri Y; Galmiche A
    Cancer Lett; 2017 Apr; 392():1-8. PubMed ID: 28161506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Strategy and Vector Library for the Rapid Generation of Modular Light-Controlled Protein-Protein Interactions.
    Tichy AM; Gerrard EJ; Legrand JMD; Hobbs RM; Janovjak H
    J Mol Biol; 2019 Aug; 431(17):3046-3055. PubMed ID: 31150735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-sensitive degron variants for tuning protein stability by light.
    Usherenko S; Stibbe H; Muscò M; Essen LO; Kostina EA; Taxis C
    BMC Syst Biol; 2014 Nov; 8():128. PubMed ID: 25403319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR.
    Xu X; Balsiger R; Tyrrell J; Boyaka PN; Tarran R; Cormet-Boyaka E
    Biochim Biophys Acta; 2015 Jun; 1850(6):1224-32. PubMed ID: 25697727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.