These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31600196)

  • 41. Novel system of communication in crickets originated at the same time as bat echolocation and includes male-male multimodal communication.
    Benavides-Lopez JL; Ter Hofstede H; Robillard T
    Naturwissenschaften; 2020 Jan; 107(1):9. PubMed ID: 31950367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Directionality of hearing in two CF/FM bats, Pteronotus parnellii and Rhinolophus rouxi.
    Firzlaff U; Schuller G
    Hear Res; 2004 Nov; 197(1-2):74-86. PubMed ID: 15504606
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resolving evolutionary relationships among six closely related taxa of the horseshoe bats (Rhinolophus) with targeted resequencing data.
    Mao X; Tsagkogeorga G; Thong VD; Rossiter SJ
    Mol Phylogenet Evol; 2019 Oct; 139():106551. PubMed ID: 31276779
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nonecholocating fruit bats produce biosonar clicks with their wings.
    Boonman A; Bumrungsri S; Yovel Y
    Curr Biol; 2014 Dec; 24(24):2962-7. PubMed ID: 25484290
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trait-based functional dietary analysis provides a better insight into the foraging ecology of bats.
    Arrizabalaga-Escudero A; Merckx T; García-Baquero G; Wahlberg N; Aizpurua O; Garin I; Goiti U; Aihartza J
    J Anim Ecol; 2019 Oct; 88(10):1587-1600. PubMed ID: 31310329
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum.
    Ma J; Kobayasi K; Zhang S; Metzner W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 May; 192(5):535-50. PubMed ID: 16418857
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Patterns and causes of geographic variation in bat echolocation pulses.
    Jiang T; Wu H; Feng J
    Integr Zool; 2015 May; 10(3):241-56. PubMed ID: 25664901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Auditory properties of the superior colliculus in the horseshoe bat, Rhinolophus rouxi.
    Reimer K
    J Comp Physiol A; 1991 Dec; 169(6):719-28. PubMed ID: 1795237
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (chiroptera).
    Eick GN; Jacobs DS; Matthee CA
    Mol Biol Evol; 2005 Sep; 22(9):1869-86. PubMed ID: 15930153
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular evolution of bat color vision genes.
    Wang D; Oakley T; Mower J; Shimmin LC; Yim S; Honeycutt RL; Tsao H; Li WH
    Mol Biol Evol; 2004 Feb; 21(2):295-302. PubMed ID: 14660703
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel Bartonella Species in Insectivorous Bats, Northern China.
    Han HJ; Wen HL; Zhao L; Liu JW; Luo LM; Zhou CM; Qin XR; Zhu YL; Zheng XX; Yu XJ
    PLoS One; 2017; 12(1):e0167915. PubMed ID: 28081122
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A new species of the Miniopterus australis species complex (Chiroptera: Miniopteridae) from the Western Ghats, India.
    Srinivasulu B; Srinivasulu A
    Zootaxa; 2023 May; 5296(2):233-249. PubMed ID: 37518447
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Normal embryonic development of the greater horseshoe bat Rhinolophus ferrumequinum, with special reference to nose leaf formation.
    Usui K; Tokita M
    J Morphol; 2019 Sep; 280(9):1309-1322. PubMed ID: 31260578
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Encephalization, adaptation and evolution of chiroptera: A statistical analysis with further evidence for bat monophyly.
    Lapointe F; Baron G; Legendre P
    Brain Behav Evol; 1999 Aug; 54(2):119-26. PubMed ID: 10529523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Review of genetic diversification of bats in the Caribbean and biogeographic relationships to Neotropical species based on DNA barcodes.
    Lim BK
    Genome; 2017 Jan; 60(1):65-73. PubMed ID: 27936933
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of ecological factors in shaping bat cone opsin evolution.
    Gutierrez EA; Schott RK; Preston MW; Loureiro LO; Lim BK; Chang BSW
    Proc Biol Sci; 2018 Apr; 285(1876):. PubMed ID: 29618549
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands.
    Juste J; Ibáñez C; Muñoz J; Trujillo D; Benda P; Karataş A; Ruedi M
    Mol Phylogenet Evol; 2004 Jun; 31(3):1114-26. PubMed ID: 15120404
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-banding comparison.
    Mao X; Nie W; Wang J; Su W; Ao L; Feng Q; Wang Y; Volleth M; Yang F
    Chromosome Res; 2007; 15(7):835-48. PubMed ID: 17899409
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Does nasal echolocation influence the modularity of the mammal skull?
    Santana SE; Lofgren SE
    J Evol Biol; 2013 Nov; 26(11):2520-6. PubMed ID: 24016130
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Auditory sensitivity of Hawaiian moths (Lepidoptera: Noctuidae) and selective predation by the Hawaiian hoary bat (Chiroptera: Lasiurus cinereus semotus).
    Fullard JH
    Proc Biol Sci; 2001 Jul; 268(1474):1375-80. PubMed ID: 11429137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.