These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31600246)

  • 21. The temperature sensitivity of soil organic carbon decomposition is not related to labile and recalcitrant carbon.
    Tang J; Cheng H; Fang C
    PLoS One; 2017; 12(11):e0186675. PubMed ID: 29095839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature sensitivity of soil carbon fractions in boreal forest soil.
    Karhu K; Fritze H; Hämäläinen K; Vanhala P; Jungner H; Oinonen M; Sonninen E; Tuomi M; Spetz P; Kitunen V; Liski J
    Ecology; 2010 Feb; 91(2):370-6. PubMed ID: 20392002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems.
    Wang Q; Liu S; Tian P
    Glob Chang Biol; 2018 Jul; 24(7):2841-2849. PubMed ID: 29476638
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity.
    Yallop AR; Clutterbuck B
    Sci Total Environ; 2009 Jun; 407(12):3803-13. PubMed ID: 19345986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissolved organic carbon and disinfection by-product precursor release from managed peat soils.
    Fleck JA; Bossio DA; Fujii R
    J Environ Qual; 2004; 33(2):465-75. PubMed ID: 15074797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regional variation in the temperature sensitivity of soil organic matter decomposition in China's forests and grasslands.
    Liu Y; He N; Zhu J; Xu L; Yu G; Niu S; Sun X; Wen X
    Glob Chang Biol; 2017 Aug; 23(8):3393-3402. PubMed ID: 28055123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest.
    Savage KE; Parton WJ; Davidson EA; Trumbore SE; Frey SD
    Glob Chang Biol; 2013 Aug; 19(8):2389-400. PubMed ID: 23589498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Responses of soil organic carbon and nitrogen decomposition to changing temperature and related research methods: a review].
    Wu JG
    Ying Yong Sheng Tai Xue Bao; 2007 Dec; 18(12):2896-904. PubMed ID: 18333473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Partitioning carbon dioxide emission and assessing dissolved organic carbon leaching of a drained peatland cultivated with pineapple at Saratok, Malaysia.
    Lim Kim Choo LN; Ahmed OH
    ScientificWorldJournal; 2014; 2014():906021. PubMed ID: 25215335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial mineralization of cellulose in frozen soils.
    Segura JH; Nilsson MB; Haei M; Sparrman T; Mikkola JP; Gräsvik J; Schleucher J; Öquist MG
    Nat Commun; 2017 Oct; 8(1):1154. PubMed ID: 29074961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negative effects of climate change on upland grassland productivity and carbon fluxes are not attenuated by nitrogen status.
    Eze S; Palmer SM; Chapman PJ
    Sci Total Environ; 2018 Oct; 637-638():398-407. PubMed ID: 29753228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Constraints on microbial communities, decomposition and methane production in deep peat deposits.
    Kluber LA; Johnston ER; Allen SA; Hendershot JN; Hanson PJ; Schadt CW
    PLoS One; 2020; 15(2):e0223744. PubMed ID: 32027653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. No evidence for increased loss of old carbon in a temperate organic soil after 13 years of simulated climatic warming despite increased CO
    Briones MJI; Garnett MH; Ineson P
    Glob Chang Biol; 2021 May; 27(9):1836-1847. PubMed ID: 33528070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.
    Wang Q; Wang D; Wen X; Yu G; He N; Wang R
    PLoS One; 2015; 10(2):e0117033. PubMed ID: 25692291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissolved organic matter release and retention in ultisols in relation to land use patterns.
    Zhang Q; Hou C; Liang Y; Feng Y
    Chemosphere; 2014 Jul; 107():432-438. PubMed ID: 24704143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of nitrogen fertilization in sustaining organic matter in cultivated soils.
    Ladha JK; Reddy CK; Padre AT; van Kessel C
    J Environ Qual; 2011; 40(6):1756-66. PubMed ID: 22031558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function.
    Grandy AS; Neff JC
    Sci Total Environ; 2008 Oct; 404(2-3):297-307. PubMed ID: 18190951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature sensitivity of soil organic carbon decomposition increased with mean carbon residence time: Field incubation and data assimilation.
    Zhou X; Xu X; Zhou G; Luo Y
    Glob Chang Biol; 2018 Feb; 24(2):810-822. PubMed ID: 29314486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactive effects of ozone depletion and climate change on biogeochemical cycles.
    Zepp RG; Callaghan TV; Erickson DJ
    Photochem Photobiol Sci; 2003 Jan; 2(1):51-61. PubMed ID: 12659539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental warming shows that decomposition temperature sensitivity increases with soil organic matter recalcitrance.
    Conant RT; Steinweg JM; Haddix ML; Paul EA; Plante AF; Six J
    Ecology; 2008 Sep; 89(9):2384-91. PubMed ID: 18831158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.