These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31600528)

  • 21. Elevated endogenous GABA level correlates with decreased fMRI signals in the rat brain during acute inhibition of GABA transaminase.
    Chen Z; Silva AC; Yang J; Shen J
    J Neurosci Res; 2005 Feb; 79(3):383-91. PubMed ID: 15619231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationships between glutamine, glutamate, and GABA in nerve endings under Pb-toxicity conditions.
    Struzyńska L; Sulkowski G
    J Inorg Biochem; 2004 Jun; 98(6):951-8. PubMed ID: 15149801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutaraldehyde cross-linked glutamate oxidase coated microelectrode arrays: selectivity and resting levels of glutamate in the CNS.
    Burmeister JJ; Davis VA; Quintero JE; Pomerleau F; Huettl P; Gerhardt GA
    ACS Chem Neurosci; 2013 May; 4(5):721-8. PubMed ID: 23650904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel microwire-based biosensor probe for simultaneous real-time measurement of glutamate and GABA dynamics in vitro and in vivo.
    Doughty PT; Hossain I; Gong C; Ponder KA; Pati S; Arumugam PU; Murray TA
    Sci Rep; 2020 Jul; 10(1):12777. PubMed ID: 32728074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of epileptogenesis: A paradigm for the integration of enzyme-based microelectrode arrays and optogenetics.
    Butler CR; Boychuk JA; Pomerleau F; Alcala R; Huettl P; Ai Y; Jakobsson J; Whiteheart SW; Gerhardt GA; Smith BN; Slevin JT
    Epilepsy Res; 2020 Jan; 159():106244. PubMed ID: 31816591
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of highly sensitive, flexible dual L-glutamate and GABA microsensors for in vivo brain sensing.
    Chu SS; Nguyen HA; Lin D; Bhatti M; Jones-Tinsley CE; Do AH; Frostig RD; Nenadic Z; Xu X; Lim MM; Cao H
    Biosens Bioelectron; 2023 Feb; 222():114941. PubMed ID: 36455372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.
    Agnesi F; Tye SJ; Bledsoe JM; Griessenauer CJ; Kimble CJ; Sieck GC; Bennet KE; Garris PA; Blaha CD; Lee KH
    J Neurosurg; 2009 Oct; 111(4):701-11. PubMed ID: 19425899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic differences in the modulation of accumbal glutamate and γ-amino butyric acid levels after cocaine-induced reinstatement.
    Miguéns M; Botreau F; Olías O; Del Olmo N; Coria SM; Higuera-Matas A; Ambrosio E
    Addict Biol; 2013 Jul; 18(4):623-32. PubMed ID: 22004520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Convulsant and subconvulsant doses of norfloxacin in the presence and absence of biphenylacetic acid alter extracellular hippocampal glutamate but not gamma-aminobutyric acid levels in conscious rats.
    Smolders I; Gousseau C; Marchand S; Couet W; Ebinger G; Michotte Y
    Antimicrob Agents Chemother; 2002 Feb; 46(2):471-7. PubMed ID: 11796360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels.
    Peña F; Tapia R
    Neuroscience; 2000; 101(3):547-61. PubMed ID: 11113304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bio-electrochemical microelectrode arrays for glutamate and electrophysiology detection in hippocampus of temporal lobe epileptic rats.
    Li Z; Song Y; Xiao G; Gao F; Xu S; Wang M; Zhang Y; Guo F; Liu J; Xia Y; Cai X
    Anal Biochem; 2018 Jun; 550():123-131. PubMed ID: 29723519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time electrochemical imaging using an individually addressable multi-channel electrode.
    Hayashi K; Horiuchi T; Kurita R; Torimitsu K; Niwa O
    Biosens Bioelectron; 2000; 15(9-10):523-9. PubMed ID: 11419649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain microdialysis of GABA and glutamate: what does it signify?
    Timmerman W; Westerink BH
    Synapse; 1997 Nov; 27(3):242-61. PubMed ID: 9329159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous measurements of ascorbate and glutamate in vivo in the rat brain using carbon fiber nanocomposite sensors and microbiosensor arrays.
    Ferreira NR; Ledo A; Laranjinha J; Gerhardt GA; Barbosa RM
    Bioelectrochemistry; 2018 Jun; 121():142-150. PubMed ID: 29413864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevated endogenous GABA concentration attenuates glutamate-glutamine cycling between neurons and astroglia.
    Yang J; Shen J
    J Neural Transm (Vienna); 2009 Mar; 116(3):291-300. PubMed ID: 19184333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of γ-Aminobutyric acid transporter 1 inhibition by tiagabine on brain glutamate and γ-Aminobutyric acid metabolism in the anesthetized rat In vivo.
    Patel AB; de Graaf RA; Rothman DL; Behar KL
    J Neurosci Res; 2015 Jul; 93(7):1101-8. PubMed ID: 25663257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptic regulation of somatodendritic dopamine release by glutamate and GABA differs between substantia nigra and ventral tegmental area.
    Chen BT; Rice ME
    J Neurochem; 2002 Apr; 81(1):158-69. PubMed ID: 12067228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of depth electrode implantation with or without subsequent kindling on GABA turnover in various rat brain regions.
    Löscher W; Hönack D; Gramer M
    Epilepsy Res; 1999 Nov; 37(2):95-108. PubMed ID: 10510976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tonic and phasic release of glutamate and acetylcholine neurotransmission in sub-regions of the rat prefrontal cortex using enzyme-based microelectrode arrays.
    Mattinson CE; Burmeister JJ; Quintero JE; Pomerleau F; Huettl P; Gerhardt GA
    J Neurosci Methods; 2011 Nov; 202(2):199-208. PubMed ID: 21896284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous glutamate recordings in the frontal cortex network with multisite biomorphic microelectrodes: New tools for ADHD research.
    Miller EM; Quintero JE; Pomerleau F; Huettl P; Gerhardt GA; Glaser PE
    J Neurosci Methods; 2015 Aug; 252():75-9. PubMed ID: 25614383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.