BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31600571)

  • 1. Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli.
    Yu Y; Zhu X; Xu H; Zhang X
    Metab Eng; 2019 Dec; 56():181-189. PubMed ID: 31600571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli.
    Zhang X; Shanmugam KT; Ingram LO
    Appl Environ Microbiol; 2010 Apr; 76(8):2397-401. PubMed ID: 20154114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced succinate production from glycerol by engineered Escherichia coli strains.
    Li Q; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Oct; 218():217-23. PubMed ID: 27371794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation.
    Wang C; Cai H; Chen Z; Zhou Z
    Biotechnol Lett; 2016 Oct; 38(10):1791-7. PubMed ID: 27395064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli.
    Zhu X; Tan Z; Xu H; Chen J; Tang J; Zhang X
    Metab Eng; 2014 Jul; 24():87-96. PubMed ID: 24831708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol.
    Clomburg JM; Gonzalez R
    Biotechnol Bioeng; 2011 Apr; 108(4):867-79. PubMed ID: 21404260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient anaerobic production of succinate from glycerol in engineered Escherichia coli by using dual carbon sources and limiting oxygen supply in preceding aerobic culture.
    Li Q; Huang B; Wu H; Li Z; Ye Q
    Bioresour Technol; 2017 May; 231():75-84. PubMed ID: 28196782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of succinate yield by manipulating NADH/NAD
    Li J; Li Y; Cui Z; Liang Q; Qi Q
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3153-3161. PubMed ID: 28108762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Escherichia coli FdrA Variant Derived from Syntrophic Coculture with a Methanogen Increases Succinate Production Due to Changes in Allantoin Degradation.
    Kim NY; Lee YJ; Park JW; Kim SN; Kim EY; Kim Y; Kim OB
    mSphere; 2021 Oct; 6(5):e0065421. PubMed ID: 34494882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-guided metabolic gene knockout of gnd for enhanced succinate production in Escherichia coli from glucose and glycerol substrates.
    Mienda BS; Shamsir MS; Illias RM
    Comput Biol Chem; 2016 Apr; 61():130-7. PubMed ID: 26878126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.
    Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG
    J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity.
    Sánchez AM; Bennett GN; San KY
    Metab Eng; 2005 May; 7(3):229-39. PubMed ID: 15885621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli genome-scale metabolic gene knockout of lactate dehydrogenase (ldhA), increases succinate production from glycerol.
    Mienda BS
    J Biomol Struct Dyn; 2018 Nov; 36(14):3680-3686. PubMed ID: 29057718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli.
    Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR
    BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol.
    Mazumdar S; Clomburg JM; Gonzalez R
    Appl Environ Microbiol; 2010 Jul; 76(13):4327-36. PubMed ID: 20472739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed pathway evolution of the glyoxylate shunt in Escherichia coli for improved aerobic succinate production from glycerol.
    Li N; Zhang B; Chen T; Wang Z; Tang YJ; Zhao X
    J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1461-75. PubMed ID: 24085686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli.
    Durnin G; Clomburg J; Yeates Z; Alvarez PJ; Zygourakis K; Campbell P; Gonzalez R
    Biotechnol Bioeng; 2009 May; 103(1):148-61. PubMed ID: 19189409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase.
    Balzer GJ; Thakker C; Bennett GN; San KY
    Metab Eng; 2013 Nov; 20():1-8. PubMed ID: 23876411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.