These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31600714)

  • 1. User expectations of partial driving automation capabilities and their effect on information design preferences in the vehicle.
    Ulahannan A; Cain R; Thompson S; Skrypchuk L; Mouzakitis A; Jennings P; Birrell S
    Appl Ergon; 2020 Jan; 82():102969. PubMed ID: 31600714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of driver active interventions during automated driving by displaying trajectory pointers-A driving simulator study.
    Ono S; Sasaki H; Kumon H; Fuwamoto Y; Kondo S; Narumi T; Tanikawa T; Hirose M
    Traffic Inj Prev; 2019; 20(sup1):S152-S156. PubMed ID: 31381449
    [No Abstract]   [Full Text] [Related]  

  • 3. The Effect of Partial Automation on Driver Attention: A Naturalistic Driving Study.
    Gaspar J; Carney C
    Hum Factors; 2019 Dec; 61(8):1261-1276. PubMed ID: 30920852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and take-over performance.
    Naujoks F; Höfling S; Purucker C; Zeeb K
    Accid Anal Prev; 2018 Dec; 121():28-42. PubMed ID: 30205284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of highly automated driving on the self-perception of drivers in the context of Conduct-by-Wire.
    Kauer M; Franz B; Maier A; Bruder R
    Ergonomics; 2015; 58(2):321-34. PubMed ID: 25343710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-vehicle displays to support driver anticipation of traffic conflicts in automated vehicles.
    He D; Kanaan D; Donmez B
    Accid Anal Prev; 2021 Jan; 149():105842. PubMed ID: 33157393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safer than the average human driver (who is less safe than me)? Examining a popular safety benchmark for self-driving cars.
    Nees MA
    J Safety Res; 2019 Jun; 69():61-68. PubMed ID: 31235236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing drivers' response during automated driver support system failures with non-driving tasks.
    Shen S; Neyens DM
    J Safety Res; 2017 Jun; 61():149-155. PubMed ID: 28454860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preface to the special section on human factors and automation in vehicles: designing highly automated vehicles with the driver in mind.
    Merat N; Lee JD
    Hum Factors; 2012 Oct; 54(5):681-6. PubMed ID: 23156614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective cues for accelerating young drivers' time to transfer control following a period of conditional automation.
    Wright TJ; Agrawal R; Samuel S; Wang Y; Zilberstein S; Fisher DL
    Accid Anal Prev; 2018 Jul; 116():14-20. PubMed ID: 29031513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of varying levels of vehicle automation on drivers' lane changing behaviour.
    Madigan R; Louw T; Merat N
    PLoS One; 2018; 13(2):e0192190. PubMed ID: 29466402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What determines the take-over time? An integrated model approach of driver take-over after automated driving.
    Zeeb K; Buchner A; Schrauf M
    Accid Anal Prev; 2015 May; 78():212-221. PubMed ID: 25794922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driver behavior and the use of automation in real-world driving.
    Gershon P; Seaman S; Mehler B; Reimer B; Coughlin J
    Accid Anal Prev; 2021 Aug; 158():106217. PubMed ID: 34087506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of information from dash-based human-machine interfaces on drivers' gaze patterns and lane-change manoeuvres after conditionally automated driving.
    Gonçalves RC; Louw TL; Madigan R; Quaresma M; Romano R; Merat N
    Accid Anal Prev; 2022 Sep; 174():106726. PubMed ID: 35716544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of motor control requirements on drivers' eye-gaze pattern during automated driving.
    Goncalves RC; Louw TL; Quaresma M; Madigan R; Merat N
    Accid Anal Prev; 2020 Dec; 148():105788. PubMed ID: 33039820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of an Additional Task During Level 2 Automated Driving: An On-Road Study Comparing Drivers With and Without Experience With Partial Automation.
    Solís-Marcos I; Ahlström C; Kircher K
    Hum Factors; 2018 Sep; 60(6):778-792. PubMed ID: 29791201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use patterns among early adopters of adaptive cruise control.
    Xiong H; Boyle LN; Moeckli J; Dow BR; Brown TL
    Hum Factors; 2012 Oct; 54(5):722-33. PubMed ID: 23156618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driving with a partially autonomous forward collision warning system: how do drivers react?
    Muhrer E; Reinprecht K; Vollrath M
    Hum Factors; 2012 Oct; 54(5):698-708. PubMed ID: 23156616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driver Expectations of a Partial Driving Automation System in Relation to Branding and Training.
    Singer J; Tefft BC; Benson A; Jenness JW; Horrey WJ
    Hum Factors; 2024 May; 66(5):1531-1544. PubMed ID: 36530124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of scheduled manual driving on drowsiness and response to take over request: A simulator study towards understanding drivers in automated driving.
    Wu Y; Kihara K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    Accid Anal Prev; 2019 Mar; 124():202-209. PubMed ID: 30665055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.