These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 31600829)

  • 1. Mitigating inherent noise in Monte Carlo dose distributions using dilated U-Net.
    Javaid U; Souris K; Dasnoy D; Huang S; Lee JA
    Med Phys; 2019 Dec; 46(12):5790-5798. PubMed ID: 31600829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Denoising proton therapy Monte Carlo dose distributions in multiple tumor sites: A comparative neural networks architecture study.
    Javaid U; Souris K; Huang S; Lee JA
    Phys Med; 2021 Sep; 89():93-103. PubMed ID: 34358755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A plan verification platform for online adaptive proton therapy using deep learning-based Monte-Carlo denoising.
    Zhang G; Chen X; Dai J; Men K
    Phys Med; 2022 Nov; 103():18-25. PubMed ID: 36201903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based fast denoising of Monte Carlo dose calculation in carbon ion radiotherapy.
    Zhang X; Zhang H; Wang J; Ma Y; Liu X; Dai Z; He R; He P; Li Q
    Med Phys; 2023 Dec; 50(12):7314-7323. PubMed ID: 37656065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel multichannel deep learning model for fast denoising of Monte Carlo dose calculations: preclinical applications.
    van Dijk RHW; Staut N; Wolfs CJA; Verhaegen F
    Phys Med Biol; 2022 Aug; 67(16):. PubMed ID: 35938467
    [No Abstract]   [Full Text] [Related]  

  • 6. A comparison of Monte Carlo dose calculation denoising techniques.
    El Naqa I; Kawrakow I; Fippel M; Siebers JV; Lindsay PE; Wickerhauser MV; Vicic M; Zakarian K; Kauffmann N; Deasy JO
    Phys Med Biol; 2005 Mar; 50(5):909-22. PubMed ID: 15798264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of four-dimensional (4D) Monte Carlo dose calculation in real-time tumor tracking stereotatic body radiotherapy for lung cancers.
    Chan MK; Kwong DL; Ng SC; Tam EK; Tong AS
    Med Phys; 2012 Sep; 39(9):5479-87. PubMed ID: 22957615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation dose calculation in 3D heterogeneous media using artificial neural networks.
    Keal J; Santos A; Penfold S; Douglass M
    Med Phys; 2021 May; 48(5):2637-2645. PubMed ID: 33595104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A noise correction of the γ-index method for Monte Carlo dose distribution comparison.
    Cohilis M; Sterpin E; Lee JA; Souris K
    Med Phys; 2020 Feb; 47(2):681-692. PubMed ID: 31660623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Framework for denoising Monte Carlo photon transport simulations using deep learning.
    Ardakani MR; Yu L; Kaeli D; Fang Q
    J Biomed Opt; 2022 May; 27(8):. PubMed ID: 35614533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physically constrained Monte Carlo-Neural Network coupling algorithm for BNCT dose calculation.
    Wang Y; Du J; Lin H; Guan X; Zhang L; Li J; Gu L
    Med Phys; 2024 Jun; 51(6):4524-4535. PubMed ID: 38299670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The denoising of Monte Carlo dose distributions using convolution superposition calculations.
    El Naqa I; Cui J; Lindsay P; Olivera G; Deasy JO
    Phys Med Biol; 2007 Sep; 52(17):N375-85. PubMed ID: 17762073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolution neural network toward Monte Carlo photon dose calculation in radiation therapy.
    Zhang B; Liu X; Chen L; Zhu J
    Med Phys; 2022 Feb; 49(2):1248-1261. PubMed ID: 34897703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XIORT-MC: A real-time MC-based dose computation tool for low- energy X-rays intraoperative radiation therapy.
    Ibáñez P; Villa-Abaunza A; Vidal M; Guerra P; Graullera S; Illana C; Udías JM
    Med Phys; 2021 Dec; 48(12):8089-8106. PubMed ID: 34658039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of a hybrid Monte Carlo-Pencil Beam dose algorithm for proton therapy inverse planning.
    Barragán Montero AM; Souris K; Sanchez-Parcerisa D; Sterpin E; Lee JA
    Med Phys; 2018 Feb; 45(2):846-862. PubMed ID: 29159915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy.
    Pokhrel D; Sood S; Badkul R; Jiang H; McClinton C; Lominska C; Kumar P; Wang F
    J Appl Clin Med Phys; 2016 May; 17(3):277-293. PubMed ID: 27167284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative assessment of the accuracy of dose calculation using pencil beam and Monte Carlo algorithms and requirements for clinical quality assurance.
    Ali I; Ahmad S
    Med Dosim; 2013; 38(3):255-61. PubMed ID: 23558145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphics processing units-accelerated adaptive nonlocal means filter for denoising three-dimensional Monte Carlo photon transport simulations.
    Yuan Y; Yu L; Doğan Z; Fang Q
    J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30499265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA; Roberge D; Seuntjens J
    Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.