These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31600831)

  • 1. Up-regulation of lipid metabolism and glycine betaine synthesis are associated with choline-induced salt tolerance in halophytic seashore paspalum.
    Gao Y; Li M; Zhang X; Yang Q; Huang B
    Plant Cell Environ; 2020 Jan; 43(1):159-173. PubMed ID: 31600831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choline-Mediated Lipid Reprogramming as a Dominant Salt Tolerance Mechanism in Grass Species Lacking Glycine Betaine.
    Zhang K; Lyu W; Gao Y; Zhang X; Sun Y; Huang B
    Plant Cell Physiol; 2021 Feb; 61(12):2018-2030. PubMed ID: 32931553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum).
    Wu P; Cogill S; Qiu Y; Li Z; Zhou M; Hu Q; Chang Z; Noorai RE; Xia X; Saski C; Raymer P; Luo H
    BMC Genomics; 2020 Feb; 21(1):131. PubMed ID: 32033524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid metabolism and antioxidant system contribute to salinity tolerance in halophytic grass seashore paspalum in a tissue-specific manner.
    Pan L; Hu X; Liao L; Xu T; Sun Q; Tang M; Chen Z; Wang Z
    BMC Plant Biol; 2023 Jun; 23(1):337. PubMed ID: 37353755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Halophyte Seashore Paspalum Uses Adaxial Leaf Papillae for Sodium Sequestration.
    Spiekerman JJ; Devos KM
    Plant Physiol; 2020 Dec; 184(4):2107-2119. PubMed ID: 33082268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of differentially expressed salt-responsive proteins in roots of two perennial grass species contrasting in salinity tolerance.
    Liu Y; Du H; He X; Huang B; Wang Z
    J Plant Physiol; 2012 Jan; 169(2):117-26. PubMed ID: 22070977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast-localized PvBASS2 regulates salt tolerance in the C4 plant seashore paspalum.
    Huang R; Dai M; Jiang S; Guo Z; Shi H
    Plant J; 2024 Sep; 119(6):2782-2796. PubMed ID: 39058753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A calmodulin-like protein PvCML9 negatively regulates salt tolerance.
    Yang M; Zhou B; Song Z; Tan Z; Liu R; Luo Y; Guo Z; Lu S
    Plant Physiol Biochem; 2024 May; 210():108642. PubMed ID: 38643538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraspecific variation in elemental accumulation and its association with salt tolerance in Paspalum vaginatum.
    Goad DM; Kellogg EA; Baxter I; Olsen KM
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34568927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and lipidomic response of exogenous choline chloride alleviating salt stress injury in Kentucky bluegrass (
    Zuo ZF; Li Y; Mi XF; Li YL; Zhai CY; Yang GF; Wang ZY; Zhang K
    Front Plant Sci; 2023; 14():1269286. PubMed ID: 37719216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and Validation of Reference Genes for Seashore Paspalum Response to Abiotic Stresses.
    Liu Y; Liu J; Xu L; Lai H; Chen Y; Yang Z; Huang B
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28635628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of PvWAK3 from seashore paspalum increases salt tolerance in transgenic Arabidopsis via maintenance of ion and ROS homeostasis.
    Li Y; Yang Q; Huang H; Guo Y; Sun Q; Guo Z; Shi H
    Plant Physiol Biochem; 2024 Feb; 207():108337. PubMed ID: 38199027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The transgene pyramiding tobacco with betaine synthesis and heterologous expression of AtNHX1 is more tolerant to salt stress than either of the tobacco lines with betaine synthesis or AtNHX1.
    Duan X; Song Y; Yang A; Zhang J
    Physiol Plant; 2009 Mar; 135(3):281-95. PubMed ID: 19236662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological responses and tolerance mechanisms of seashore paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses.
    Katuwal KB; Xiao B; Jespersen D
    J Plant Physiol; 2020 May; 248():153154. PubMed ID: 32224382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the tolerance and forage quality of different ecotypes of seashore paspalum.
    Jiang K; Yang Z; Sun J; Liu H; Chen S; Zhao Y; Xiong W; Lu W; Wang ZY; Wu X
    Front Plant Sci; 2022; 13():944894. PubMed ID: 36247632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipidomic metabolism associated with acetic acid priming-induced salt tolerance in Carex rigescens.
    Hu Q; Cui H; Ma C; Li Y; Yang C; Wang K; Sun Y
    Plant Physiol Biochem; 2021 Oct; 167():665-677. PubMed ID: 34488152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Japanese beetle (Coleoptera: Scarabaeidae) feeding on seashore paspalum.
    Braman SK; Raymer PL
    J Econ Entomol; 2006 Oct; 99(5):1699-704. PubMed ID: 17066801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of a NF-YC Gene Results in Enhanced Drought and Salt Tolerance in Transgenic Seashore Paspalum.
    Wu X; Shi H; Guo Z
    Front Plant Sci; 2018; 9():1355. PubMed ID: 30298080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance.
    Chen Y; Chen C; Tan Z; Liu J; Zhuang L; Yang Z; Huang B
    Front Plant Sci; 2016; 7():102. PubMed ID: 26904068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybridization, polyploidy and clonality influence geographic patterns of diversity and salt tolerance in the model halophyte seashore paspalum (Paspalum vaginatum).
    Goad DM; Baxter I; Kellogg EA; Olsen KM
    Mol Ecol; 2021 Jan; 30(1):148-161. PubMed ID: 33128807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.