BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31600831)

  • 1. Up-regulation of lipid metabolism and glycine betaine synthesis are associated with choline-induced salt tolerance in halophytic seashore paspalum.
    Gao Y; Li M; Zhang X; Yang Q; Huang B
    Plant Cell Environ; 2020 Jan; 43(1):159-173. PubMed ID: 31600831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choline-Mediated Lipid Reprogramming as a Dominant Salt Tolerance Mechanism in Grass Species Lacking Glycine Betaine.
    Zhang K; Lyu W; Gao Y; Zhang X; Sun Y; Huang B
    Plant Cell Physiol; 2021 Feb; 61(12):2018-2030. PubMed ID: 32931553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum).
    Wu P; Cogill S; Qiu Y; Li Z; Zhou M; Hu Q; Chang Z; Noorai RE; Xia X; Saski C; Raymer P; Luo H
    BMC Genomics; 2020 Feb; 21(1):131. PubMed ID: 32033524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid metabolism and antioxidant system contribute to salinity tolerance in halophytic grass seashore paspalum in a tissue-specific manner.
    Pan L; Hu X; Liao L; Xu T; Sun Q; Tang M; Chen Z; Wang Z
    BMC Plant Biol; 2023 Jun; 23(1):337. PubMed ID: 37353755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Halophyte Seashore Paspalum Uses Adaxial Leaf Papillae for Sodium Sequestration.
    Spiekerman JJ; Devos KM
    Plant Physiol; 2020 Dec; 184(4):2107-2119. PubMed ID: 33082268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of differentially expressed salt-responsive proteins in roots of two perennial grass species contrasting in salinity tolerance.
    Liu Y; Du H; He X; Huang B; Wang Z
    J Plant Physiol; 2012 Jan; 169(2):117-26. PubMed ID: 22070977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A calmodulin-like protein PvCML9 negatively regulates salt tolerance.
    Yang M; Zhou B; Song Z; Tan Z; Liu R; Luo Y; Guo Z; Lu S
    Plant Physiol Biochem; 2024 May; 210():108642. PubMed ID: 38643538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraspecific variation in elemental accumulation and its association with salt tolerance in Paspalum vaginatum.
    Goad DM; Kellogg EA; Baxter I; Olsen KM
    G3 (Bethesda); 2021 Sep; 11(10):. PubMed ID: 34568927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and lipidomic response of exogenous choline chloride alleviating salt stress injury in Kentucky bluegrass (
    Zuo ZF; Li Y; Mi XF; Li YL; Zhai CY; Yang GF; Wang ZY; Zhang K
    Front Plant Sci; 2023; 14():1269286. PubMed ID: 37719216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Validation of Reference Genes for Seashore Paspalum Response to Abiotic Stresses.
    Liu Y; Liu J; Xu L; Lai H; Chen Y; Yang Z; Huang B
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28635628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of PvWAK3 from seashore paspalum increases salt tolerance in transgenic Arabidopsis via maintenance of ion and ROS homeostasis.
    Li Y; Yang Q; Huang H; Guo Y; Sun Q; Guo Z; Shi H
    Plant Physiol Biochem; 2024 Feb; 207():108337. PubMed ID: 38199027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transgene pyramiding tobacco with betaine synthesis and heterologous expression of AtNHX1 is more tolerant to salt stress than either of the tobacco lines with betaine synthesis or AtNHX1.
    Duan X; Song Y; Yang A; Zhang J
    Physiol Plant; 2009 Mar; 135(3):281-95. PubMed ID: 19236662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological responses and tolerance mechanisms of seashore paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses.
    Katuwal KB; Xiao B; Jespersen D
    J Plant Physiol; 2020 May; 248():153154. PubMed ID: 32224382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the tolerance and forage quality of different ecotypes of seashore paspalum.
    Jiang K; Yang Z; Sun J; Liu H; Chen S; Zhao Y; Xiong W; Lu W; Wang ZY; Wu X
    Front Plant Sci; 2022; 13():944894. PubMed ID: 36247632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipidomic metabolism associated with acetic acid priming-induced salt tolerance in Carex rigescens.
    Hu Q; Cui H; Ma C; Li Y; Yang C; Wang K; Sun Y
    Plant Physiol Biochem; 2021 Oct; 167():665-677. PubMed ID: 34488152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Japanese beetle (Coleoptera: Scarabaeidae) feeding on seashore paspalum.
    Braman SK; Raymer PL
    J Econ Entomol; 2006 Oct; 99(5):1699-704. PubMed ID: 17066801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of a NF-YC Gene Results in Enhanced Drought and Salt Tolerance in Transgenic Seashore Paspalum.
    Wu X; Shi H; Guo Z
    Front Plant Sci; 2018; 9():1355. PubMed ID: 30298080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance.
    Chen Y; Chen C; Tan Z; Liu J; Zhuang L; Yang Z; Huang B
    Front Plant Sci; 2016; 7():102. PubMed ID: 26904068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybridization, polyploidy and clonality influence geographic patterns of diversity and salt tolerance in the model halophyte seashore paspalum (Paspalum vaginatum).
    Goad DM; Baxter I; Kellogg EA; Olsen KM
    Mol Ecol; 2021 Jan; 30(1):148-161. PubMed ID: 33128807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato (Solanum lycopersicum L.) commercial genotypes.
    De la Torre-González A; Montesinos-Pereira D; Blasco B; Ruiz JM
    J Plant Physiol; 2018 Dec; 231():329-336. PubMed ID: 30388672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.