BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31600837)

  • 1. Assessing localized dosimetric effects due to unplanned gas cavities during pelvic MR-guided radiotherapy using Monte Carlo simulations.
    Shortall J; Vasquez Osorio E; Chuter R; McWilliam A; Choudhury A; Kirkby K; Mackay R; van Herk M
    Med Phys; 2019 Dec; 46(12):5807-5815. PubMed ID: 31600837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing local dose perturbations due to gas cavities in magnetic resonance-guided radiotherapy.
    Shortall J; Vasquez Osorio E; Chuter R; Green A; McWilliam A; Kirkby K; Mackay R; van Herk M
    Med Phys; 2020 Jun; 47(6):2484-2494. PubMed ID: 32144781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental verification the electron return effect around spherical air cavities for the MR-Linac using Monte Carlo calculation.
    Shortall J; Vasquez Osorio E; Aitkenhead A; Berresford J; Agnew J; Budgell G; Chuter R; McWilliam A; Kirkby K; Mackay R; van Herk M
    Med Phys; 2020 Jun; 47(6):2506-2515. PubMed ID: 32145087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution.
    Uilkema S; van der Heide U; Sonke JJ; Moreau M; van Triest B; Nijkamp J
    Med Phys; 2015 Dec; 42(12):7182-9. PubMed ID: 26632072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields.
    Bol GH; Lagendijk JJ; Raaymakers BW
    Phys Med Biol; 2015 Jan; 60(2):755-68. PubMed ID: 25559321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of varying air cavity on planning dosimetry for rectum patients treated on a 1.5 T hybrid MR-linac system.
    Godoy Scripes P; Subashi E; Burleson S; Liang J; Romesser P; Crane C; Mechalakos J; Hunt M; Tyagi N
    J Appl Clin Med Phys; 2020 Jul; 21(7):144-152. PubMed ID: 32445292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo optimization and experimental validation of a prototype ionization chamber for accurate magnetic resonance image guided radiation therapy (MRgRT) daily output constancy measurements in solid phantoms.
    Muir BR; Nusrat H; Sarfehnia A; Renaud J
    Med Phys; 2022 Aug; 49(8):5483-5490. PubMed ID: 35536047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo evaluation of tissue inhomogeneity effects in the treatment of the head and neck.
    Wang L; Yorke E; Chui CS
    Int J Radiat Oncol Biol Phys; 2001 Aug; 50(5):1339-49. PubMed ID: 11483347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a 1.5 T MR-Linac full accelerator head and cryostat model for Monte Carlo dose simulations.
    Friedel M; Nachbar M; Mönnich D; Dohm O; Thorwarth D
    Med Phys; 2019 Nov; 46(11):5304-5313. PubMed ID: 31532829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and evaluation of a GEANT4-based Monte Carlo Model of a 0.35 T MR-guided radiation therapy (MRgRT) linear accelerator.
    Khan AU; Simiele EA; Lotey R; DeWerd LA; Yadav P
    Med Phys; 2021 Apr; 48(4):1967-1982. PubMed ID: 33555052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dosimetric Effects of Air Cavities for MRI-Guided Online Adaptive Radiation Therapy (MRgART) of Prostate Bed after Radical Prostatectomy.
    Pham J; Cao M; Yoon SM; Gao Y; Kishan AU; Yang Y
    J Clin Med; 2022 Jan; 11(2):. PubMed ID: 35054061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte-Carlo study to assess the effect of 1.5 T magnetic fields on the overall robustness of pencil-beam scanning proton radiotherapy plans for prostate cancer.
    Kurz C; Landry G; Resch AF; Dedes G; Kamp F; Ganswindt U; Belka C; Raaymakers BW; Parodi K
    Phys Med Biol; 2017 Oct; 62(21):8470-8482. PubMed ID: 29047455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter- and intra-fractional stability of rectal gas in pelvic cancer patients during MRIgRT.
    Shortall J; Vasquez Osorio E; Cree A; Song Y; Dubec M; Chuter R; Price G; McWilliam A; Kirkby K; Mackay R; van Herk M
    Med Phys; 2021 Jan; 48(1):414-426. PubMed ID: 33164217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical imaging method to quantify spatial dose variation due to the electron return effect in an MR-linac.
    Andreozzi JM; Brůža P; Cammin J; Pogue BW; Gladstone DJ; Green O
    Med Phys; 2020 Mar; 47(3):1258-1267. PubMed ID: 31821573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the dose perturbation effect for therapeutic beams with the presence of a 1.5 T transverse magnetic field in magnetic resonance imaging-guided radiotherapy.
    Shao W; Tang X; Bai Y; Shu D; Geng C; Gong C; Guan F
    J Cancer Res Ther; 2018 Jan; 14(1):184-195. PubMed ID: 29516984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the cavity on sinus wall dose in magnetic resonance image-guided radiation therapy.
    Kubota T; Araki F; Ohno T
    Phys Med; 2020 Jun; 74():100-109. PubMed ID: 32450541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rectal wall sparing by dosimetric effect of rectal balloon used during intensity-modulated radiation therapy (IMRT) for prostate cancer.
    Teh BS; Dong L; McGary JE; Mai WY; Grant W; Butler EB
    Med Dosim; 2005; 30(1):25-30. PubMed ID: 15749008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons.
    Raaijmakers AJ; Raaymakers BW; Lagendijk JJ
    Phys Med Biol; 2005 Apr; 50(7):1363-76. PubMed ID: 15798329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dosimetric feasibility of real-time MRI-guided proton therapy.
    Moteabbed M; Schuemann J; Paganetti H
    Med Phys; 2014 Nov; 41(11):111713. PubMed ID: 25370627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic field induced dose effects in radiation therapy using MR-linacs.
    Huang CY; Yang B; Lam WW; Geng H; Cheung KY; Yu SK
    Med Phys; 2023 Jun; 50(6):3623-3636. PubMed ID: 36975016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.