These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292 [TBL] [Abstract][Full Text] [Related]
3. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750 [TBL] [Abstract][Full Text] [Related]
4. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
5. Nanocomposite Conductive Bioinks Based on Low-Concentration GelMA and MXene Nanosheets/Gold Nanoparticles Providing Enhanced Printability of Functional Skeletal Muscle Tissues. Boularaoui S; Shanti A; Lanotte M; Luo S; Bawazir S; Lee S; Christoforou N; Khan KA; Stefanini C ACS Biomater Sci Eng; 2021 Dec; 7(12):5810-5822. PubMed ID: 34802227 [TBL] [Abstract][Full Text] [Related]
6. Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation. Ronzoni FL; Aliberti F; Scocozza F; Benedetti L; Auricchio F; Sampaolesi M; Cusella G; Redwan IN; Ceccarelli G; Conti M J Tissue Eng Regen Med; 2022 May; 16(5):484-495. PubMed ID: 35246958 [TBL] [Abstract][Full Text] [Related]
7. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]
8. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy. Yin J; Yan M; Wang Y; Fu J; Suo H ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059 [TBL] [Abstract][Full Text] [Related]
9. Extrusion 3D (Bio)Printing of Alginate-Gelatin-Based Composite Scaffolds for Skeletal Muscle Tissue Engineering. Sonaye SY; Ertugral EG; Kothapalli CR; Sikder P Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431432 [TBL] [Abstract][Full Text] [Related]
10. Marine Biomaterial-Based Bioinks for Generating 3D Printed Tissue Constructs. Zhang X; Kim GJ; Kang MG; Lee JK; Seo JW; Do JT; Hong K; Cha JM; Shin SR; Bae H Mar Drugs; 2018 Dec; 16(12):. PubMed ID: 30518062 [TBL] [Abstract][Full Text] [Related]
11. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370 [TBL] [Abstract][Full Text] [Related]
12. Supplementation of GelMA with Minimally Processed Tissue Promotes the Formation of Densely Packed Skeletal-Muscle-Like Tissues. Tavares-Negrete JA; Pedroza-González SC; Frías-Sánchez AI; Salas-Ramírez ML; de Santiago-Miramontes MLÁ; Luna-Aguirre CM; Alvarez MM; Trujillo-de Santiago G ACS Biomater Sci Eng; 2023 Jun; 9(6):3462-3475. PubMed ID: 37126642 [TBL] [Abstract][Full Text] [Related]
13. Addition of Laponite to gelatin methacryloyl bioinks improves the rheological properties and printability to create mechanically tailorable cell culture matrices. Davern JW; Hipwood L; Bray LJ; Meinert C; Klein TJ APL Bioeng; 2024 Mar; 8(1):016101. PubMed ID: 38204454 [TBL] [Abstract][Full Text] [Related]
14. Alginate-Lysozyme Nanofibers Hydrogels with Improved Rheological Behavior, Printability and Biological Properties for 3D Bioprinting Applications. Teixeira MC; Lameirinhas NS; Carvalho JPF; Valente BFA; Luís J; Pires L; Oliveira H; Oliveira M; Silvestre AJD; Vilela C; Freire CSR Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808026 [TBL] [Abstract][Full Text] [Related]
15. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink. Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848 [TBL] [Abstract][Full Text] [Related]
16. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
17. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks. Liu W; Heinrich MA; Zhou Y; Akpek A; Hu N; Liu X; Guan X; Zhong Z; Jin X; Khademhosseini A; Zhang YS Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28464555 [TBL] [Abstract][Full Text] [Related]
18. Affinity-bound growth factor within sulfated interpenetrating network bioinks for bioprinting cartilaginous tissues. Wang B; Díaz-Payno PJ; Browe DC; Freeman FE; Nulty J; Burdis R; Kelly DJ Acta Biomater; 2021 Jul; 128():130-142. PubMed ID: 33866035 [TBL] [Abstract][Full Text] [Related]
19. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
20. A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. Shams E; Barzad MS; Mohamadnia S; Tavakoli O; Mehrdadfar A J Biomater Appl; 2022 Aug; 37(2):355-372. PubMed ID: 35510845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]