BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31601098)

  • 1. Label-Free Estimation of Therapeutic Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis.
    Zhang Z; Chen L; Wang Y; Zhang T; Chen YC; Yoon E
    Anal Chem; 2019 Nov; 91(21):14093-14100. PubMed ID: 31601098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics.
    Chiang CC; Anne R; Chawla P; Shaw RM; He S; Rock EC; Zhou M; Cheng J; Gong YN; Chen YC
    Lab Chip; 2024 Jun; 24(12):3169-3182. PubMed ID: 38804084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepHCS
    Lee G; Oh JW; Her NG; Jeong WK
    Med Image Anal; 2021 May; 70():101995. PubMed ID: 33640720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Plug-and-Play, Drug-on-Pillar Platform for Combination Drug Screening Implemented by Microfluidic Adaptive Printing.
    Li J; Tan W; Xiao W; Carney RP; Men Y; Li Y; Quon G; Ajena Y; Lam KS; Pan T
    Anal Chem; 2018 Dec; 90(23):13969-13977. PubMed ID: 30358386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip.
    Lei KF; Wu MH; Hsu CW; Chen YD
    Biosens Bioelectron; 2014 Jan; 51():16-21. PubMed ID: 23920091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early Prediction of Single-Cell Derived Sphere Formation Rate Using Convolutional Neural Network Image Analysis.
    Chen YC; Zhang Z; Yoon E
    Anal Chem; 2020 Jun; 92(11):7717-7724. PubMed ID: 32427465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LANCE: a Label-Free Live Apoptotic and Necrotic Cell Explorer Using Convolutional Neural Network Image Analysis.
    Hartnett EB; Zhou M; Gong YN; Chen YC
    Anal Chem; 2022 Nov; 94(43):14827-14834. PubMed ID: 36251981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthogonal Screening of Anticancer Drugs Using an Open-Access Microfluidic Tissue Array System.
    Lin D; Li P; Lin J; Shu B; Wang W; Zhang Q; Yang N; Liu D; Xu B
    Anal Chem; 2017 Nov; 89(22):11976-11984. PubMed ID: 29053257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning deep features for dead and living breast cancer cell classification without staining.
    Pattarone G; Acion L; Simian M; Mertelsmann R; Follo M; Iarussi E
    Sci Rep; 2021 May; 11(1):10304. PubMed ID: 33986434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cell classification in lensless single random phase encoding using convolutional neural networks.
    O'Connor T; Hawxhurst C; Shor LM; Javidi B
    Opt Express; 2020 Oct; 28(22):33504-33515. PubMed ID: 33115011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic-based frequency-multiplexing impedance sensor (FMIS).
    Meissner R; Joris P; Eker B; Bertsch A; Renaud P
    Lab Chip; 2012 Aug; 12(15):2712-8. PubMed ID: 22627460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment.
    Holton AB; Sinatra FL; Kreahling J; Conway AJ; Landis DA; Altiok S
    PLoS One; 2017; 12(1):e0169797. PubMed ID: 28085924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect of the combination therapy on ovarian cancer cells under microfluidic conditions.
    Flont M; Jastrzębska E; Brzózka Z
    Anal Chim Acta; 2020 Mar; 1100():138-148. PubMed ID: 31987134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical learning of deep features from drug-exposed cell images to calculate IC50 without staining.
    Cho K; Choi ES; Kim JH; Son JW; Kim E
    Sci Rep; 2022 Apr; 12(1):6610. PubMed ID: 35459284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterising a PDMS based 3D cell culturing microfluidic platform for screening chemotherapeutic drug cytotoxic activity.
    Khot MI; Levenstein MA; de Boer GN; Armstrong G; Maisey T; Svavarsdottir HS; Andrew H; Perry SL; Kapur N; Jayne DG
    Sci Rep; 2020 Sep; 10(1):15915. PubMed ID: 32985610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening.
    Chen MC; Gupta M; Cheung KC
    Biomed Microdevices; 2010 Aug; 12(4):647-54. PubMed ID: 20237849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL
    Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. THz Spectroscopy for a Rapid and Label-Free Cell Viability Assay in a Microfluidic Chip Based on an Optical Clearing Agent.
    Yang K; Yang X; Zhao X; Lamy de la Chapelle M; Fu W
    Anal Chem; 2019 Jan; 91(1):785-791. PubMed ID: 30335363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel-based diffusion chip with Electric Cell-substrate Impedance Sensing (ECIS) integration for cell viability assay and drug toxicity screening.
    Tran TB; Cho S; Min J
    Biosens Bioelectron; 2013 Dec; 50():453-9. PubMed ID: 23911660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial, Temporal, and Dose Control of Drug Delivery using Noninvasive Magnetic Stimulation.
    Chen W; Cheng CA; Zink JI
    ACS Nano; 2019 Feb; 13(2):1292-1308. PubMed ID: 30633500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.