These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31601165)

  • 41. Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011.
    Park AK; Kim IS; Jeon BW; Roh SJ; Ryu MY; Baek HR; Jo SW; Kim YS; Park H; Lee JH; Yoon HS; Kim HW
    Biochem Biophys Res Commun; 2016 Aug; 477(3):395-400. PubMed ID: 27329814
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanistic insights from reaction of α-oxiranyl-aldehydes with cyanobacterial aldehyde deformylating oxygenase.
    Das D; Ellington B; Paul B; Marsh EN
    ACS Chem Biol; 2014 Feb; 9(2):570-7. PubMed ID: 24313866
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering self-sufficient aldehyde deformylating oxygenases fused to alternative electron transfer systems for efficient conversion of aldehydes into alkanes.
    Wang Q; Huang X; Zhang J; Lu X; Li S; Li JJ
    Chem Commun (Camb); 2014 Apr; 50(33):4299-301. PubMed ID: 24637640
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases.
    Li N; Chang WC; Warui DM; Booker SJ; Krebs C; Bollinger JM
    Biochemistry; 2012 Oct; 51(40):7908-16. PubMed ID: 22947199
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cyanobacterial aldehyde deformylase oxygenation of aldehydes yields n-1 aldehydes and alcohols in addition to alkanes.
    Aukema KG; Makris TM; Stoian SA; Richman JE; Münck E; Lipscomb JD; Wackett LP
    ACS Catal; 2013 Oct; 3(10):2228-2238. PubMed ID: 24490119
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products.
    Kaiser BK; Carleton M; Hickman JW; Miller C; Lawson D; Budde M; Warrener P; Paredes A; Mullapudi S; Navarro P; Cross F; Roberts JM
    PLoS One; 2013; 8(3):e58307. PubMed ID: 23505484
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2.
    Andre C; Kim SW; Yu XH; Shanklin J
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):3191-6. PubMed ID: 23391732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthetic metabolic pathways for photobiological conversion of CO
    Yunus IS; Wichmann J; Wördenweber R; Lauersen KJ; Kruse O; Jones PR
    Metab Eng; 2018 Sep; 49():201-211. PubMed ID: 30144559
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light-Activated Electron Transfer and Turnover in Ru-Modified Aldehyde Deformylating Oxygenases.
    Bains RK; Miller JJ; van der Roest HK; Qu S; Lute B; Warren JJ
    Inorg Chem; 2018 Jul; 57(14):8211-8217. PubMed ID: 29939728
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved production of fatty alcohols in cyanobacteria by metabolic engineering.
    Yao L; Qi F; Tan X; Lu X
    Biotechnol Biofuels; 2014; 7():94. PubMed ID: 25024742
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved fatty aldehyde and wax ester production by overexpression of fatty acyl-CoA reductases.
    Lehtinen T; Efimova E; Santala S; Santala V
    Microb Cell Fact; 2018 Feb; 17(1):19. PubMed ID: 29422050
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering cyanobacteria to improve photosynthetic production of alka(e)nes.
    Wang W; Liu X; Lu X
    Biotechnol Biofuels; 2013 May; 6(1):69. PubMed ID: 23641684
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aldehyde-forming fatty acyl-CoA reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme.
    Lin F; Das D; Lin XN; Marsh EN
    FEBS J; 2013 Oct; 280(19):4773-81. PubMed ID: 23895371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.
    Rodriguez GM; Atsumi S
    Metab Eng; 2014 Sep; 25():227-37. PubMed ID: 25108218
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like 'di-iron-carboxylate' proteins.
    Krebs C; Bollinger JM; Booker SJ
    Curr Opin Chem Biol; 2011 Apr; 15(2):291-303. PubMed ID: 21440485
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Addition of formate dehydrogenase increases the production of renewable alkane from an engineered metabolic pathway.
    Jaroensuk J; Intasian P; Kiattisewee C; Munkajohnpon P; Chunthaboon P; Buttranon S; Trisrivirat D; Wongnate T; Maenpuen S; Tinikul R; Chaiyen P
    J Biol Chem; 2019 Jul; 294(30):11536-11548. PubMed ID: 31182484
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptomic analysis of cyanobacterial alkane overproduction reveals stress-related genes and inhibitors of lipid droplet formation.
    Arias DB; Gomez Pinto KA; Cooper KK; Summers ML
    Microb Genom; 2020 Oct; 6(10):. PubMed ID: 32941127
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enzymatic Electrosynthesis of Alkanes by Bioelectrocatalytic Decarbonylation of Fatty Aldehydes.
    Abdellaoui S; Macazo FC; Cai R; De Lacey AL; Pita M; Minteer SD
    Angew Chem Int Ed Engl; 2018 Feb; 57(9):2404-2408. PubMed ID: 29286557
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cellulosic hydrocarbons production by engineering dual synthesis pathways in Corynebacterium glutamicum.
    Xu YY; Hua KJ; Huang Z; Zhou PP; Wen JB; Jin C; Bao J
    Biotechnol Biofuels Bioprod; 2022 Mar; 15(1):29. PubMed ID: 35292099
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli.
    Makino T; Harada H; Ikenaga H; Matsuda S; Takaichi S; Shindo K; Sandmann G; Ogata T; Misawa N
    Plant Cell Physiol; 2008 Dec; 49(12):1867-78. PubMed ID: 18987067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.