These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31601271)

  • 21. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by
    Gonzalez JE; Long CP; Antoniewicz MR
    Metab Eng; 2017 Jan; 39():9-18. PubMed ID: 27840237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations.
    Nikolic N; Barner T; Ackermann M
    BMC Microbiol; 2013 Nov; 13():258. PubMed ID: 24238347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose.
    Soma Y; Fujiwara Y; Nakagawa T; Tsuruno K; Hanai T
    Metab Eng; 2017 Sep; 43(Pt A):54-63. PubMed ID: 28800966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of a Bacterial Luciferase Monitoring System To Estimate Real-Time Dynamics of Intracellular Metabolism in Escherichia coli.
    Shimada T; Tanaka K
    Appl Environ Microbiol; 2016 Oct; 82(19):5960-8. PubMed ID: 27474708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli.
    Haverkorn van Rijsewijk BR; Nanchen A; Nallet S; Kleijn RJ; Sauer U
    Mol Syst Biol; 2011 Mar; 7():477. PubMed ID: 21451587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic modeling and response surface analysis of an Escherichia coli strain engineered for shikimic acid production.
    Martínez JA; Rodriguez A; Moreno F; Flores N; Lara AR; Ramírez OT; Gosset G; Bolivar F
    BMC Syst Biol; 2018 Nov; 12(1):102. PubMed ID: 30419897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New insights into transport capability of sugars and its impact on growth from novel mutants of Escherichia coli.
    Alva A; Sabido-Ramos A; Escalante A; Bolívar F
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1463-1479. PubMed ID: 31900563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range.
    Choi JW; Yim SS; Lee SH; Kang TJ; Park SJ; Jeong KJ
    Microb Cell Fact; 2015 Feb; 14():21. PubMed ID: 25886194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic and transcriptional response of recombinant Escherichia coli to elevated dissolved carbon dioxide concentrations.
    Baez A; Flores N; Bolívar F; Ramírez OT
    Biotechnol Bioeng; 2009 Sep; 104(1):102-10. PubMed ID: 19452501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.
    Yang C; Gao X; Jiang Y; Sun B; Gao F; Yang S
    Metab Eng; 2016 Sep; 37():79-91. PubMed ID: 27174717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose.
    Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose consumption rate-dependent transcriptome profiling of Escherichia coli provides insight on performance as microbial factories.
    Fragoso-Jiménez JC; Gutierrez-Rios RM; Flores N; Martinez A; Lara AR; Delvigne F; Gosset G
    Microb Cell Fact; 2022 Sep; 21(1):189. PubMed ID: 36100849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ¹³C-metabolic flux analysis for Escherichia coli.
    Matsuoka Y; Shimizu K
    Methods Mol Biol; 2014; 1191():261-89. PubMed ID: 25178796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterizing the effect of expression of an acetyl-CoA synthetase insensitive to acetylation on co-utilization of glucose and acetate in batch and continuous cultures of E. coli W.
    Novak K; Flöckner L; Erian AM; Freitag P; Herwig C; Pflügl S
    Microb Cell Fact; 2018 Jul; 17(1):109. PubMed ID: 29986728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deletion of the 2-acyl-glycerophosphoethanolamine cycle improve glucose metabolism in Escherichia coli strains employed for overproduction of aromatic compounds.
    Aguilar C; Flores N; Riveros-McKay F; Sahonero-Canavesi D; Carmona SB; Geiger O; Escalante A; Bolívar F
    Microb Cell Fact; 2015 Dec; 14():194. PubMed ID: 26627477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene expression pattern analysis of a recombinant Escherichia coli strain possessing high growth and lycopene production capability when using fructose as carbon source.
    Du W; Song Y; Liu M; Yang H; Zhang Y; Fan Y; Luo X; Li Z; Wang N; He H; Zhou H; Ma W; Zhang T
    Biotechnol Lett; 2016 Sep; 38(9):1571-7. PubMed ID: 27379652
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic regulation of an fnr gene knockout Escherichia coli under oxygen limitation.
    Marzan LW; Siddiquee KA; Shimizu K
    Bioeng Bugs; 2011; 2(6):331-7. PubMed ID: 22008943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli.
    Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR
    BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter.
    Dung Pham V; Somasundaram S; Lee SH; Park SJ; Hong SH
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):79-86. PubMed ID: 26620318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.