These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31601271)

  • 41. 13C metabolic flux analysis at a genome-scale.
    Gopalakrishnan S; Maranas CD
    Metab Eng; 2015 Nov; 32():12-22. PubMed ID: 26358840
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli.
    Zhang S; Yang W; Chen H; Liu B; Lin B; Tao Y
    Microb Cell Fact; 2019 Aug; 18(1):130. PubMed ID: 31387584
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of differentially upregulated proteins in ptsHIcrr
    Aguilar C; Martínez-Batallar G; Flores N; Moreno-Avitia F; Encarnación S; Escalante A; Bolívar F
    Appl Microbiol Biotechnol; 2018 Dec; 102(23):10193-10208. PubMed ID: 30284012
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli.
    Jarmander J; Hallström BM; Larsson G
    Biotechnol Bioeng; 2014 Jun; 111(6):1108-15. PubMed ID: 24382675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Establishing a synergetic carbon utilization mechanism for non-catabolic use of glucose in microbial synthesis of trehalose.
    Wu Y; Sun X; Lin Y; Shen X; Yang Y; Jain R; Yuan Q; Yan Y
    Metab Eng; 2017 Jan; 39():1-8. PubMed ID: 27818152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthetic metabolic bypass for a metabolic toggle switch enhances acetyl-CoA supply for isopropanol production by Escherichia coli.
    Soma Y; Yamaji T; Matsuda F; Hanai T
    J Biosci Bioeng; 2017 May; 123(5):625-633. PubMed ID: 28214243
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.
    He L; Xiao Y; Gebreselassie N; Zhang F; Antoniewiez MR; Tang YJ; Peng L
    Biotechnol Bioeng; 2014 Mar; 111(3):575-85. PubMed ID: 24122357
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli.
    Jarmander J; Belotserkovsky J; Sjöberg G; Guevara-Martínez M; Pérez-Zabaleta M; Quillaguamán J; Larsson G
    Microb Cell Fact; 2015 Apr; 14():51. PubMed ID: 25889969
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Csr System Regulates
    Morin M; Ropers D; Cinquemani E; Portais JC; Enjalbert B; Cocaign-Bousquet M
    mBio; 2017 Oct; 8(5):. PubMed ID: 29089432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli.
    Wittmann C; Weber J; Betiku E; Krömer J; Böhm D; Rinas U
    J Biotechnol; 2007 Dec; 132(4):375-84. PubMed ID: 17689798
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reconstruction of metabolic pathway for isobutanol production in Escherichia coli.
    Noda S; Mori Y; Oyama S; Kondo A; Araki M; Shirai T
    Microb Cell Fact; 2019 Jul; 18(1):124. PubMed ID: 31319852
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modelling overflow metabolism in Escherichia coli with flux balance analysis incorporating differential proteomic efficiencies of energy pathways.
    Zeng H; Yang A
    BMC Syst Biol; 2019 Jan; 13(1):3. PubMed ID: 30630470
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of citramalate by metabolically engineered Escherichia coli.
    Wu X; Eiteman MA
    Biotechnol Bioeng; 2016 Dec; 113(12):2670-2675. PubMed ID: 27316562
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic network capacity of Escherichia coli for Krebs cycle-dependent proline hydroxylation.
    Theodosiou E; Frick O; Bühler B; Schmid A
    Microb Cell Fact; 2015 Jul; 14():108. PubMed ID: 26215086
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic characterization of Escherichia coli strains adapted to growth on lactate.
    Hua Q; Joyce AR; Palsson BØ; Fong SS
    Appl Environ Microbiol; 2007 Jul; 73(14):4639-47. PubMed ID: 17513588
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments.
    Li M; Ho PY; Yao S; Shimizu K
    J Biotechnol; 2006 Mar; 122(2):254-66. PubMed ID: 16310273
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose.
    Jorge JM; Leggewie C; Wendisch VF
    Amino Acids; 2016 Nov; 48(11):2519-2531. PubMed ID: 27289384
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multiplex growth rate phenotyping of synthetic mutants in selection to engineer glucose and xylose co-utilization in Escherichia coli.
    Groot J; Cepress-Mclean SC; Robbins-Pianka A; Knight R; Gill RT
    Biotechnol Bioeng; 2017 Apr; 114(4):885-893. PubMed ID: 27861733
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain.
    Rodriguez A; Martínez JA; Millard P; Gosset G; Portais JC; Létisse F; Bolivar F
    Biotechnol Bioeng; 2017 Jun; 114(6):1319-1330. PubMed ID: 28186321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.