These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31601423)
21. Release of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) from polymer-bonded explosives (PBXN-109) into water by artificial weathering. Kumar M; Ladyman MK; Mai N; Temple T; Coulon F Chemosphere; 2017 Feb; 169():604-608. PubMed ID: 27907880 [TBL] [Abstract][Full Text] [Related]
22. Computer simulation for the study of the liquid chromatographic separation of explosive molecules. Liu CW; Kuo BC; Liu MH; Huang YR; Chen CL J Mol Graph Model; 2018 Oct; 85():331-339. PubMed ID: 30292170 [TBL] [Abstract][Full Text] [Related]
23. Two-dimensional liquid chromatography analysis of synthetic polymers using fast size exclusion chromatography at high column temperature. Im K; Park HW; Lee S; Chang T J Chromatogr A; 2009 May; 1216(21):4606-10. PubMed ID: 19375711 [TBL] [Abstract][Full Text] [Related]
24. Pareto-optimality study into the comparison of the separation potential of comprehensive two-dimensional liquid chromatography in the column and spatial modes. Vanhoutte DJ; Vivó-Truyols G; Schoenmakers PJ J Chromatogr A; 2012 Apr; 1235():39-48. PubMed ID: 22424732 [TBL] [Abstract][Full Text] [Related]
25. Comprehensive high temperature two-dimensional liquid chromatography combined with high temperature gradient chromatography-infrared spectroscopy for the analysis of impact polypropylene copolymers. Cheruthazhekatt S; Harding GW; Pasch H J Chromatogr A; 2013 Apr; 1286():69-82. PubMed ID: 23489491 [TBL] [Abstract][Full Text] [Related]
26. Stop-flow reversed phase liquid chromatography × size-exclusion chromatography for separation of peptides. Xu J; Zheng L; Lin L; Sun B; Su G; Zhao M Anal Chim Acta; 2018 Aug; 1018():119-126. PubMed ID: 29605129 [TBL] [Abstract][Full Text] [Related]
27. Separation and identification of polymeric dispersants in detergents by two-dimensional liquid chromatography. Yang P; Gao W; Shulman JE; Chen Y J Chromatogr A; 2018 Sep; 1566():111-117. PubMed ID: 29960735 [TBL] [Abstract][Full Text] [Related]
28. Fast and efficient size-based separations of polymers using ultra-high-pressure liquid chromatography. Uliyanchenko E; Schoenmakers PJ; van der Wal S J Chromatogr A; 2011 Mar; 1218(11):1509-18. PubMed ID: 21300362 [TBL] [Abstract][Full Text] [Related]
29. Characterization of functionalized polyolefins by high-temperature two-dimensional liquid chromatography. Ginzburg A; Macko T; Malz F; Schroers M; Troetsch-Schaller I; Strittmatter J; Brüll R J Chromatogr A; 2013 Apr; 1285():40-7. PubMed ID: 23474199 [TBL] [Abstract][Full Text] [Related]
30. Internal Explosion Performance of RDX@Nano-B Composite Explosives. Xi P; Sun S; Shang Y; Wang X; Dong J; Feng X Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770372 [TBL] [Abstract][Full Text] [Related]
33. Determination of plastic additives in packaging by liquid chromatography coupled to high resolution mass spectrometry. Moreta C; Tena MT J Chromatogr A; 2015 Oct; 1414():77-87. PubMed ID: 26319625 [TBL] [Abstract][Full Text] [Related]
34. Comprehensive two-dimensional high-performance liquid chromatography for the isolation of overexpressed proteins and proteome mapping. Opiteck GJ; Ramirez SM; Jorgenson JW; Moseley MA Anal Biochem; 1998 May; 258(2):349-61. PubMed ID: 9570851 [TBL] [Abstract][Full Text] [Related]
35. Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry Analysis of Eutectic Bis(2,2-dinitropropyl) Acetal/Formal Degradation Profile: Nontargeted Identification of Antioxidant Derivatives. Chen K; Edgar AS; Jung J; Kress JD; Wong CH; Yang D ACS Omega; 2022 Oct; 7(39):35316-35325. PubMed ID: 36211031 [TBL] [Abstract][Full Text] [Related]
36. Progressing the analysis of Improvised Explosive Devices: Comparative study for trace detection of explosive residues in handprints by Raman spectroscopy and liquid chromatography. Zapata F; de la Ossa MÁF; Gilchrist E; Barron L; García-Ruiz C Talanta; 2016 Dec; 161():219-227. PubMed ID: 27769399 [TBL] [Abstract][Full Text] [Related]
37. Use of experimental design in the investigation of stir bar sorptive extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry for the analysis of explosives in water samples. Schramm S; Vailhen D; Bridoux MC J Chromatogr A; 2016 Feb; 1433():24-33. PubMed ID: 26777783 [TBL] [Abstract][Full Text] [Related]
38. Additional band broadening of peptides in the first size-exclusion chromatographic dimension of an automated stop-flow two-dimensional high performance liquid chromatography. Xu J; Sun-Waterhouse D; Qiu C; Zhao M; Sun B; Lin L; Su G J Chromatogr A; 2017 Oct; 1521():80-89. PubMed ID: 28951053 [TBL] [Abstract][Full Text] [Related]
39. Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA Method 8330 explosives: influence of temperature and an ion-pair reagent. Borch T; Gerlach R J Chromatogr A; 2004 Jan; 1022(1-2):83-94. PubMed ID: 14753774 [TBL] [Abstract][Full Text] [Related]
40. Development of a new SPME-HPLC-UV method for the analysis of nitro explosives on reverse phase amide column and application to analysis of aqueous samples. Gaurav ; Malik AK; Rai PK J Hazard Mater; 2009 Dec; 172(2-3):1652-8. PubMed ID: 19744774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]