These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 31601573)
1. Bayesian Estimation of CBF Measured by DSC-MRI in Patients with Moyamoya Disease: Comparison with Hara S; Tanaka Y; Hayashi S; Inaji M; Maehara T; Hori M; Aoki S; Ishii K; Nariai T AJNR Am J Neuroradiol; 2019 Nov; 40(11):1894-1900. PubMed ID: 31601573 [TBL] [Abstract][Full Text] [Related]
2. Noninvasive Evaluation of CBF and Perfusion Delay of Moyamoya Disease Using Arterial Spin-Labeling MRI with Multiple Postlabeling Delays: Comparison with Hara S; Tanaka Y; Ueda Y; Hayashi S; Inaji M; Ishiwata K; Ishii K; Maehara T; Nariai T AJNR Am J Neuroradiol; 2017 Apr; 38(4):696-702. PubMed ID: 28209582 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous phase-contrast MRI and PET for noninvasive quantification of cerebral blood flow and reactivity in healthy subjects and patients with cerebrovascular disease. Ishii Y; Thamm T; Guo J; Khalighi MM; Wardak M; Holley D; Gandhi H; Park JH; Shen B; Steinberg GK; Chin FT; Zaharchuk G; Fan AP J Magn Reson Imaging; 2020 Jan; 51(1):183-194. PubMed ID: 31044459 [TBL] [Abstract][Full Text] [Related]
7. Reassessing the clinical efficacy of two MR quantitative DSC PWI CBF algorithms following cross-calibration with PET images. Chen JJ; Frayne R; Smith MR Phys Med Biol; 2005 Mar; 50(6):1251-63. PubMed ID: 15798320 [TBL] [Abstract][Full Text] [Related]
8. High Intravascular Signal Arterial Transit Time Artifacts Have Negligible Effects on Cerebral Blood Flow and Cerebrovascular Reserve Capacity Measurement Using Single Postlabel Delay Arterial Spin-Labeling in Patients with Moyamoya Disease. Fahlström M; Lewén A; Enblad P; Larsson EM; Wikström J AJNR Am J Neuroradiol; 2020 Mar; 41(3):430-436. PubMed ID: 32115416 [TBL] [Abstract][Full Text] [Related]
9. Quantitative cerebral perfusion imaging in children and young adults with Moyamoya disease: comparison of arterial spin-labeling-MRI and H(2)[(15)O]-PET. Goetti R; Warnock G; Kuhn FP; Guggenberger R; O'Gorman R; Buck A; Khan N; Scheer I AJNR Am J Neuroradiol; 2014 May; 35(5):1022-8. PubMed ID: 24335546 [TBL] [Abstract][Full Text] [Related]
10. Comparison of the 2 Most Popular Deconvolution Techniques for the Detection of Penumbral Flow in Acute Stroke. Zaro-Weber O; Livne M; Martin SZ; von Samson-Himmelstjerna FC; Moeller-Hartmann W; Schuster A; Brunecker P; Heiss WD; Sobesky J; Madai VI Stroke; 2015 Oct; 46(10):2795-9. PubMed ID: 26306755 [TBL] [Abstract][Full Text] [Related]
11. Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom. Sasaki M; Kudo K; Boutelier T; Pautot F; Christensen S; Uwano I; Goodwin J; Higuchi S; Ito K; Yamashita F Neuroradiology; 2013 Oct; 55(10):1197-203. PubMed ID: 23852431 [TBL] [Abstract][Full Text] [Related]
12. Comparison of CBF Measured with Combined Velocity-Selective Arterial Spin-Labeling and Pulsed Arterial Spin-Labeling to Blood Flow Patterns Assessed by Conventional Angiography in Pediatric Moyamoya. Bolar DS; Gagoski B; Orbach DB; Smith E; Adalsteinsson E; Rosen BR; Grant PE; Robertson RL AJNR Am J Neuroradiol; 2019 Nov; 40(11):1842-1849. PubMed ID: 31694821 [TBL] [Abstract][Full Text] [Related]
13. Non-parametric deconvolution using Bézier curves for quantification of cerebral perfusion in dynamic susceptibility contrast MRI. Chakwizira A; Ahlgren A; Knutsson L; Wirestam R MAGMA; 2022 Oct; 35(5):791-804. PubMed ID: 35025071 [TBL] [Abstract][Full Text] [Related]
14. Predicting PET Cerebrovascular Reserve with Deep Learning by Using Baseline MRI: A Pilot Investigation of a Drug-Free Brain Stress Test. Chen DYT; Ishii Y; Fan AP; Guo J; Zhao MY; Steinberg GK; Zaharchuk G Radiology; 2020 Sep; 296(3):627-637. PubMed ID: 32662761 [TBL] [Abstract][Full Text] [Related]
15. Reliability of CT perfusion-derived CBF in relation to hemodynamic compromise in patients with cerebrovascular steno-occlusive disease: a comparative study with 15O PET. Ibaraki M; Ohmura T; Matsubara K; Kinoshita T J Cereb Blood Flow Metab; 2015 Aug; 35(8):1280-8. PubMed ID: 25757749 [TBL] [Abstract][Full Text] [Related]
16. Reference-based maximum upslope: a CBF quantification method without using arterial input function in dynamic susceptibility contrast MRI. Kimura T; Kusahara H Magn Reson Med Sci; 2009; 8(3):107-20. PubMed ID: 19783874 [TBL] [Abstract][Full Text] [Related]
17. Comparison of a Bayesian estimation algorithm and singular value decomposition algorithms for 80-detector row CT perfusion in patients with acute ischemic stroke. Ichikawa S; Yamamoto H; Morita T Radiol Med; 2021 Jun; 126(6):795-803. PubMed ID: 33469818 [TBL] [Abstract][Full Text] [Related]
18. Clinical assessment of cerebral hemodynamics in Moyamoya disease via multiple inversion time arterial spin labeling and dynamic susceptibility contrast-magnetic resonance imaging: A comparative study. Qiao PG; Han C; Zuo ZW; Wang YT; Pfeuffer J; Duan L; Qian T; Li GJ J Neuroradiol; 2017 Jul; 44(4):273-280. PubMed ID: 28168990 [TBL] [Abstract][Full Text] [Related]
19. Effect of delayed transit time on arterial spin labeling: correlation with dynamic susceptibility contrast perfusion magnetic resonance in moyamoya disease. Yun TJ; Sohn CH; Han MH; Kang HS; Kim JE; Yoon BW; Paeng JC; Choi SH; Kim JH; Song IC; Chang KH Invest Radiol; 2013 Nov; 48(11):795-802. PubMed ID: 23764569 [TBL] [Abstract][Full Text] [Related]
20. Long-Delay Arterial Spin Labeling Provides More Accurate Cerebral Blood Flow Measurements in Moyamoya Patients: A Simultaneous Positron Emission Tomography/MRI Study. Fan AP; Guo J; Khalighi MM; Gulaka PK; Shen B; Park JH; Gandhi H; Holley D; Rutledge O; Singh P; Haywood T; Steinberg GK; Chin FT; Zaharchuk G Stroke; 2017 Sep; 48(9):2441-2449. PubMed ID: 28765286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]