BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31601614)

  • 1. Unintended perturbation of protein function using GFP nanobodies in human cells.
    Küey C; Larocque G; Clarke NI; Royle SJ
    J Cell Sci; 2019 Nov; 132(21):. PubMed ID: 31601614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetically encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling.
    Prole DL; Taylor CW
    BMC Biol; 2019 May; 17(1):41. PubMed ID: 31122229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanobody-Based GFP Traps to Study Protein Localization and Function in Developmental Biology.
    Matsuda S; Aguilar G; Vigano MA; Affolter M
    Methods Mol Biol; 2022; 2446():581-593. PubMed ID: 35157295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Endocytic Uptake and Retrograde Transport to the Trans-Golgi Network Using Functionalized Nanobodies in Cultured Cells.
    Buser DP; Spiess M
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor-mediated Moloney murine leukemia virus entry can occur independently of the clathrin-coated-pit-mediated endocytic pathway.
    Lee S; Zhao Y; Anderson WF
    J Virol; 1999 Jul; 73(7):5994-6005. PubMed ID: 10364351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of Bacterial Protein Complexes Labeled with Fluorescent Proteins and Nanobody Binders for STED Microscopy.
    Cramer K; Bolender AL; Stockmar I; Jungmann R; Kasper R; Shin JY
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31295803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A versatile nanobody-based toolkit to analyze retrograde transport from the cell surface.
    Buser DP; Schleicher KD; Prescianotto-Baschong C; Spiess M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6227-E6236. PubMed ID: 29915061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis.
    Weng D; Yang L; Xie Y
    Protein Expr Purif; 2024 Sep; 221():106501. PubMed ID: 38782081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGN38-green fluorescent protein hybrid proteins expressed in stably transfected eukaryotic cells provide a tool for the real-time, in vivo study of membrane traffic pathways and suggest a possible role for ratTGN38.
    Girotti M; Banting G
    J Cell Sci; 1996 Dec; 109 ( Pt 12)():2915-26. PubMed ID: 9013339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of dense core vesicle recapture following "kiss and run" ("cavicapture") exocytosis in insulin-secreting cells.
    Tsuboi T; McMahon HT; Rutter GA
    J Biol Chem; 2004 Nov; 279(45):47115-24. PubMed ID: 15331588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Interaction Studies by Measuring Förster Resonance Energy Transfer Through Fluorescence Lifetime Imaging Microscopy (FRET/FLIM).
    Fäßler F; Pimpl P
    Methods Mol Biol; 2017; 1662():159-170. PubMed ID: 28861826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditional control of fluorescent protein degradation by an auxin-dependent nanobody.
    Daniel K; Icha J; Horenburg C; Müller D; Norden C; Mansfeld J
    Nat Commun; 2018 Aug; 9(1):3297. PubMed ID: 30120238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based engineering of anti-GFP nanobody tandems as ultra-high-affinity reagents for purification.
    Zhang Z; Wang Y; Ding Y; Hattori M
    Sci Rep; 2020 Apr; 10(1):6239. PubMed ID: 32277083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein.
    Magalhães AC; Silva JA; Lee KS; Martins VR; Prado VF; Ferguson SS; Gomez MV; Brentani RR; Prado MA
    J Biol Chem; 2002 Sep; 277(36):33311-8. PubMed ID: 12070160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Nanobody-Epitope Interactions in Living Cells via Quantitative Protein Transport Assays.
    Früholz S; Pimpl P
    Methods Mol Biol; 2017; 1662():171-182. PubMed ID: 28861827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis.
    Fujimoto M; Arimura S; Ueda T; Takanashi H; Hayashi Y; Nakano A; Tsutsumi N
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6094-9. PubMed ID: 20231465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of novel vectors for GFP-tagging of proteins to study microtubule-associated proteins.
    Ludin B; Doll T; Meili R; Kaech S; Matus A
    Gene; 1996; 173(1 Spec No):107-11. PubMed ID: 8707048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural localisation of protein interactions using conditionally stable nanobodies.
    Ariotti N; Rae J; Giles N; Martel N; Sierecki E; Gambin Y; Hall TE; Parton RG
    PLoS Biol; 2018 Apr; 16(4):e2005473. PubMed ID: 29621251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple method for GFP- and RFP-based dual color single-molecule localization microscopy.
    Platonova E; Winterflood CM; Ewers H
    ACS Chem Biol; 2015 Jun; 10(6):1411-6. PubMed ID: 25806422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viral Delivery of GFP-Dependent Recombinases to the Mouse Brain.
    Tang JCY; Rudolph S; Cepko CL
    Methods Mol Biol; 2017; 1642():109-126. PubMed ID: 28815497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.