These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 31601804)
1. DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data. Zeng W; Chen X; Duren Z; Wang Y; Jiang R; Wong WH Nat Commun; 2019 Oct; 10(1):4613. PubMed ID: 31601804 [TBL] [Abstract][Full Text] [Related]
4. Unsupervised clustering and epigenetic classification of single cells. Zamanighomi M; Lin Z; Daley T; Chen X; Duren Z; Schep A; Greenleaf WJ; Wong WH Nat Commun; 2018 Jun; 9(1):2410. PubMed ID: 29925875 [TBL] [Abstract][Full Text] [Related]
5. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics. Bravo González-Blas C; Quan XJ; Duran-Romaña R; Taskiran II; Koldere D; Davie K; Christiaens V; Makhzami S; Hulselmans G; de Waegeneer M; Mauduit D; Poovathingal S; Aibar S; Aerts S Mol Syst Biol; 2020 May; 16(5):e9438. PubMed ID: 32431014 [TBL] [Abstract][Full Text] [Related]
6. Building gene regulatory networks from scATAC-seq and scRNA-seq using Linked Self Organizing Maps. Jansen C; Ramirez RN; El-Ali NC; Gomez-Cabrero D; Tegner J; Merkenschlager M; Conesa A; Mortazavi A PLoS Comput Biol; 2019 Nov; 15(11):e1006555. PubMed ID: 31682608 [TBL] [Abstract][Full Text] [Related]
7. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa. Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593 [TBL] [Abstract][Full Text] [Related]
8. Matrix factorization and transfer learning uncover regulatory biology across multiple single-cell ATAC-seq data sets. Erbe R; Kessler MD; Favorov AV; Easwaran H; Gaykalova DA; Fertig EJ Nucleic Acids Res; 2020 Jul; 48(12):e68. PubMed ID: 32392348 [TBL] [Abstract][Full Text] [Related]
9. Application of Single-Cell Assay for Transposase-Accessible Chromatin with High Throughput Sequencing in Plant Science: Advances, Technical Challenges, and Prospects. Lu C; Wei Y; Abbas M; Agula H; Wang E; Meng Z; Zhang R Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338756 [TBL] [Abstract][Full Text] [Related]
10. Multiplex indexing approach for the detection of DNase I hypersensitive sites in single cells. Gao W; Ku WL; Pan L; Perrie J; Zhao T; Hu G; Wu Y; Zhu J; Ni B; Zhao K Nucleic Acids Res; 2021 Jun; 49(10):e56. PubMed ID: 33693880 [TBL] [Abstract][Full Text] [Related]
11. Multiplexed Analysis of Retinal Gene Expression and Chromatin Accessibility using scRNA-Seq and scATAC-Seq. Weir K; Leavey P; Santiago C; Blackshaw S J Vis Exp; 2021 Mar; (169):. PubMed ID: 33779599 [TBL] [Abstract][Full Text] [Related]
12. A rapid and robust method for single cell chromatin accessibility profiling. Chen X; Miragaia RJ; Natarajan KN; Teichmann SA Nat Commun; 2018 Dec; 9(1):5345. PubMed ID: 30559361 [TBL] [Abstract][Full Text] [Related]
13. Finding needles in a haystack: dissecting tumor heterogeneity with single-cell transcriptomic and chromatin accessibility profiling. Pierce SE; Kim SH; Greenleaf WJ Curr Opin Genet Dev; 2021 Feb; 66():36-40. PubMed ID: 33418426 [TBL] [Abstract][Full Text] [Related]
14. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data. Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142 [TBL] [Abstract][Full Text] [Related]
15. Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Bhattacharyya S; Chandra V; Vijayanand P; Ay F Nat Commun; 2019 Sep; 10(1):4221. PubMed ID: 31530818 [TBL] [Abstract][Full Text] [Related]
16. Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model. Liu Z Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33671799 [TBL] [Abstract][Full Text] [Related]
17. Sc-compReg enables the comparison of gene regulatory networks between conditions using single-cell data. Duren Z; Lu WS; Arthur JG; Shah P; Xin J; Meschi F; Li ML; Nemec CM; Yin Y; Wong WH Nat Commun; 2021 Aug; 12(1):4763. PubMed ID: 34362918 [TBL] [Abstract][Full Text] [Related]
18. Construction of single-cell cross-species chromatin accessibility landscapes with combinatorial-hybridization-based ATAC-seq. Zhang G; Fu Y; Yang L; Ye F; Zhang P; Zhang S; Ma L; Li J; Wu H; Han X; Wang J; Guo G Dev Cell; 2024 Mar; 59(6):793-811.e8. PubMed ID: 38330939 [TBL] [Abstract][Full Text] [Related]
19. Challenges in unsupervised clustering of single-cell RNA-seq data. Kiselev VY; Andrews TS; Hemberg M Nat Rev Genet; 2019 May; 20(5):273-282. PubMed ID: 30617341 [TBL] [Abstract][Full Text] [Related]
20. coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data. Zeng P; Lin Z PLoS Comput Biol; 2021 Jun; 17(6):e1009064. PubMed ID: 34077420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]