BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31601804)

  • 1. DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data.
    Zeng W; Chen X; Duren Z; Wang Y; Jiang R; Wong WH
    Nat Commun; 2019 Oct; 10(1):4613. PubMed ID: 31601804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
    De Rop FV; Ismail JN; Bravo González-Blas C; Hulselmans GJ; Flerin CC; Janssens J; Theunis K; Christiaens VM; Wouters J; Marcassa G; de Wit J; Poovathingal S; Aerts S
    Elife; 2022 Feb; 11():. PubMed ID: 35195064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised clustering and epigenetic classification of single cells.
    Zamanighomi M; Lin Z; Daley T; Chen X; Duren Z; Schep A; Greenleaf WJ; Wong WH
    Nat Commun; 2018 Jun; 9(1):2410. PubMed ID: 29925875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Building gene regulatory networks from scATAC-seq and scRNA-seq using Linked Self Organizing Maps.
    Jansen C; Ramirez RN; El-Ali NC; Gomez-Cabrero D; Tegner J; Merkenschlager M; Conesa A; Mortazavi A
    PLoS Comput Biol; 2019 Nov; 15(11):e1006555. PubMed ID: 31682608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of genomic enhancers through spatial integration of single-cell transcriptomics and epigenomics.
    Bravo González-Blas C; Quan XJ; Duran-Romaña R; Taskiran II; Koldere D; Davie K; Christiaens V; Makhzami S; Hulselmans G; de Waegeneer M; Mauduit D; Poovathingal S; Aibar S; Aerts S
    Mol Syst Biol; 2020 May; 16(5):e9438. PubMed ID: 32431014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Matrix factorization and transfer learning uncover regulatory biology across multiple single-cell ATAC-seq data sets.
    Erbe R; Kessler MD; Favorov AV; Easwaran H; Gaykalova DA; Fertig EJ
    Nucleic Acids Res; 2020 Jul; 48(12):e68. PubMed ID: 32392348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global prediction of chromatin accessibility using small-cell-number and single-cell RNA-seq.
    Zhou W; Ji Z; Fang W; Ji H
    Nucleic Acids Res; 2019 Nov; 47(19):e121. PubMed ID: 31428792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Single-Cell Assay for Transposase-Accessible Chromatin with High Throughput Sequencing in Plant Science: Advances, Technical Challenges, and Prospects.
    Lu C; Wei Y; Abbas M; Agula H; Wang E; Meng Z; Zhang R
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed Analysis of Retinal Gene Expression and Chromatin Accessibility using scRNA-Seq and scATAC-Seq.
    Weir K; Leavey P; Santiago C; Blackshaw S
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33779599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplex indexing approach for the detection of DNase I hypersensitive sites in single cells.
    Gao W; Ku WL; Pan L; Perrie J; Zhao T; Hu G; Wu Y; Zhu J; Ni B; Zhao K
    Nucleic Acids Res; 2021 Jun; 49(10):e56. PubMed ID: 33693880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rapid and robust method for single cell chromatin accessibility profiling.
    Chen X; Miragaia RJ; Natarajan KN; Teichmann SA
    Nat Commun; 2018 Dec; 9(1):5345. PubMed ID: 30559361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding needles in a haystack: dissecting tumor heterogeneity with single-cell transcriptomic and chromatin accessibility profiling.
    Pierce SE; Kim SH; Greenleaf WJ
    Curr Opin Genet Dev; 2021 Feb; 66():36-40. PubMed ID: 33418426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model.
    Liu Z
    Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33671799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of significant chromatin contacts from HiChIP data by FitHiChIP.
    Bhattacharyya S; Chandra V; Vijayanand P; Ay F
    Nat Commun; 2019 Sep; 10(1):4221. PubMed ID: 31530818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sc-compReg enables the comparison of gene regulatory networks between conditions using single-cell data.
    Duren Z; Lu WS; Arthur JG; Shah P; Xin J; Meschi F; Li ML; Nemec CM; Yin Y; Wong WH
    Nat Commun; 2021 Aug; 12(1):4763. PubMed ID: 34362918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of single-cell cross-species chromatin accessibility landscapes with combinatorial-hybridization-based ATAC-seq.
    Zhang G; Fu Y; Yang L; Ye F; Zhang P; Zhang S; Ma L; Li J; Wu H; Han X; Wang J; Guo G
    Dev Cell; 2024 Mar; 59(6):793-811.e8. PubMed ID: 38330939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.