These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. Patil CK; Li H; Walter P PLoS Biol; 2004 Aug; 2(8):E246. PubMed ID: 15314660 [TBL] [Abstract][Full Text] [Related]
8. Chromatin regulatory genes differentially interact in networks to facilitate distinct GAL1 activity and noise profiles. Moreno DF; Acar M Curr Genet; 2021 Apr; 67(2):267-281. PubMed ID: 33159551 [TBL] [Abstract][Full Text] [Related]
9. Variance in epistasis links gene regulation and evolutionary rate in the yeast genetic interaction network. Fierst JL; Phillips PC Genome Biol Evol; 2012; 4(11):1080-7. PubMed ID: 23019067 [TBL] [Abstract][Full Text] [Related]
10. Identification of response-modulated genetic interactions by sensitivity-based epistatic analysis. Batenchuk C; Tepliakova L; Kaern M BMC Genomics; 2010 Sep; 11():493. PubMed ID: 20831804 [TBL] [Abstract][Full Text] [Related]
11. Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae. Sariki SK; Sahu PK; Golla U; Singh V; Azad GK; Tomar RS FEBS J; 2016 Nov; 283(22):4056-4083. PubMed ID: 27718307 [TBL] [Abstract][Full Text] [Related]
12. Allele-specific behavior of molecular networks: understanding small-molecule drug response in yeast. Zhang F; Gao B; Xu L; Li C; Hao D; Zhang S; Zhou M; Su F; Chen X; Zhi H; Li X PLoS One; 2013; 8(1):e53581. PubMed ID: 23308257 [TBL] [Abstract][Full Text] [Related]
13. Conditional genetic interactions of RTT107, SLX4, and HRQ1 reveal dynamic networks upon DNA damage in S. cerevisiae. Leung GP; Aristizabal MJ; Krogan NJ; Kobor MS G3 (Bethesda); 2014 Apr; 4(6):1059-69. PubMed ID: 24700328 [TBL] [Abstract][Full Text] [Related]
14. Abundant gene-by-environment interactions in gene expression reaction norms to copper within Saccharomyces cerevisiae. Hodgins-Davis A; Adomas AB; Warringer J; Townsend JP Genome Biol Evol; 2012; 4(11):1061-79. PubMed ID: 23019066 [TBL] [Abstract][Full Text] [Related]
15. Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks. Vohradska E; Vohradsky J PLoS One; 2011 Apr; 6(4):e18827. PubMed ID: 21541341 [TBL] [Abstract][Full Text] [Related]
16. Genetic interaction network has a very limited impact on the evolutionary trajectories in continuous culture-grown populations of yeast. Klim J; Zielenkiewicz U; Skoneczny M; Skoneczna A; Kurlandzka A; Kaczanowski S BMC Ecol Evol; 2021 May; 21(1):99. PubMed ID: 34039270 [TBL] [Abstract][Full Text] [Related]
17. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches. Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527 [TBL] [Abstract][Full Text] [Related]
18. Sir2 links the unfolded protein response and the heat shock response in a stress response network. Weindling E; Bar-Nun S Biochem Biophys Res Commun; 2015 Feb; 457(3):473-8. PubMed ID: 25600811 [TBL] [Abstract][Full Text] [Related]
19. A systems-biology approach to modular genetic complexity. Carter GW; Rush CG; Uygun F; Sakhanenko NA; Galas DJ; Galitski T Chaos; 2010 Jun; 20(2):026102. PubMed ID: 20590331 [TBL] [Abstract][Full Text] [Related]