These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31602312)

  • 1. Genetic interaction networks mediate individual statin drug response in
    Busby BP; Niktab E; Roberts CA; Sheridan JP; Coorey NV; Senanayake DS; Connor LM; Munkacsi AB; Atkinson PH
    NPJ Syst Biol Appl; 2019; 5():35. PubMed ID: 31602312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks.
    He X; Qian W; Wang Z; Li Y; Zhang J
    Nat Genet; 2010 Mar; 42(3):272-6. PubMed ID: 20101242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolded Protein Response (UPR) Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.
    Hampel M; Jakobi M; Schmitz L; Meyer U; Finkernagel F; Doehlemann G; Heimel K
    PLoS One; 2016; 11(4):e0153861. PubMed ID: 27093436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic interaction profiles of regulatory kinases differ between environmental conditions and cellular states.
    Sun S; Baryshnikova A; Brandt N; Gresham D
    Mol Syst Biol; 2020 May; 16(5):e9167. PubMed ID: 32449603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants.
    Gallegos JE; Adames NR; Rogers MF; Kraikivski P; Ibele A; Nurzynski-Loth K; Kudlow E; Murali TM; Tyson JJ; Peccoud J
    NPJ Syst Biol Appl; 2020 May; 6(1):11. PubMed ID: 32376972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response.
    Patil CK; Li H; Walter P
    PLoS Biol; 2004 Aug; 2(8):E246. PubMed ID: 15314660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules.
    Guo J; Tian D; McKinney BA; Hartman JL
    Chaos; 2010 Jun; 20(2):026103. PubMed ID: 20590332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin regulatory genes differentially interact in networks to facilitate distinct GAL1 activity and noise profiles.
    Moreno DF; Acar M
    Curr Genet; 2021 Apr; 67(2):267-281. PubMed ID: 33159551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variance in epistasis links gene regulation and evolutionary rate in the yeast genetic interaction network.
    Fierst JL; Phillips PC
    Genome Biol Evol; 2012; 4(11):1080-7. PubMed ID: 23019067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of response-modulated genetic interactions by sensitivity-based epistatic analysis.
    Batenchuk C; Tepliakova L; Kaern M
    BMC Genomics; 2010 Sep; 11():493. PubMed ID: 20831804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae.
    Sariki SK; Sahu PK; Golla U; Singh V; Azad GK; Tomar RS
    FEBS J; 2016 Nov; 283(22):4056-4083. PubMed ID: 27718307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allele-specific behavior of molecular networks: understanding small-molecule drug response in yeast.
    Zhang F; Gao B; Xu L; Li C; Hao D; Zhang S; Zhou M; Su F; Chen X; Zhi H; Li X
    PLoS One; 2013; 8(1):e53581. PubMed ID: 23308257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional genetic interactions of RTT107, SLX4, and HRQ1 reveal dynamic networks upon DNA damage in S. cerevisiae.
    Leung GP; Aristizabal MJ; Krogan NJ; Kobor MS
    G3 (Bethesda); 2014 Apr; 4(6):1059-69. PubMed ID: 24700328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abundant gene-by-environment interactions in gene expression reaction norms to copper within Saccharomyces cerevisiae.
    Hodgins-Davis A; Adomas AB; Warringer J; Townsend JP
    Genome Biol Evol; 2012; 4(11):1061-79. PubMed ID: 23019066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks.
    Vohradska E; Vohradsky J
    PLoS One; 2011 Apr; 6(4):e18827. PubMed ID: 21541341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic interaction network has a very limited impact on the evolutionary trajectories in continuous culture-grown populations of yeast.
    Klim J; Zielenkiewicz U; Skoneczny M; Skoneczna A; Kurlandzka A; Kaczanowski S
    BMC Ecol Evol; 2021 May; 21(1):99. PubMed ID: 34039270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sir2 links the unfolded protein response and the heat shock response in a stress response network.
    Weindling E; Bar-Nun S
    Biochem Biophys Res Commun; 2015 Feb; 457(3):473-8. PubMed ID: 25600811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systems-biology approach to modular genetic complexity.
    Carter GW; Rush CG; Uygun F; Sakhanenko NA; Galas DJ; Galitski T
    Chaos; 2010 Jun; 20(2):026102. PubMed ID: 20590331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intersecting transcription networks constrain gene regulatory evolution.
    Sorrells TR; Booth LN; Tuch BB; Johnson AD
    Nature; 2015 Jul; 523(7560):361-5. PubMed ID: 26153861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.