BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31602312)

  • 1. Genetic interaction networks mediate individual statin drug response in
    Busby BP; Niktab E; Roberts CA; Sheridan JP; Coorey NV; Senanayake DS; Connor LM; Munkacsi AB; Atkinson PH
    NPJ Syst Biol Appl; 2019; 5():35. PubMed ID: 31602312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks.
    He X; Qian W; Wang Z; Li Y; Zhang J
    Nat Genet; 2010 Mar; 42(3):272-6. PubMed ID: 20101242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolded Protein Response (UPR) Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.
    Hampel M; Jakobi M; Schmitz L; Meyer U; Finkernagel F; Doehlemann G; Heimel K
    PLoS One; 2016; 11(4):e0153861. PubMed ID: 27093436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants.
    Gallegos JE; Adames NR; Rogers MF; Kraikivski P; Ibele A; Nurzynski-Loth K; Kudlow E; Murali TM; Tyson JJ; Peccoud J
    NPJ Syst Biol Appl; 2020 May; 6(1):11. PubMed ID: 32376972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response.
    Patil CK; Li H; Walter P
    PLoS Biol; 2004 Aug; 2(8):E246. PubMed ID: 15314660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules.
    Guo J; Tian D; McKinney BA; Hartman JL
    Chaos; 2010 Jun; 20(2):026103. PubMed ID: 20590332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sen1, the homolog of human Senataxin, is critical for cell survival through regulation of redox homeostasis, mitochondrial function, and the TOR pathway in Saccharomyces cerevisiae.
    Sariki SK; Sahu PK; Golla U; Singh V; Azad GK; Tomar RS
    FEBS J; 2016 Nov; 283(22):4056-4083. PubMed ID: 27718307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variance in epistasis links gene regulation and evolutionary rate in the yeast genetic interaction network.
    Fierst JL; Phillips PC
    Genome Biol Evol; 2012; 4(11):1080-7. PubMed ID: 23019067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin regulatory genes differentially interact in networks to facilitate distinct GAL1 activity and noise profiles.
    Moreno DF; Acar M
    Curr Genet; 2021 Apr; 67(2):267-281. PubMed ID: 33159551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of response-modulated genetic interactions by sensitivity-based epistatic analysis.
    Batenchuk C; Tepliakova L; Kaern M
    BMC Genomics; 2010 Sep; 11():493. PubMed ID: 20831804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allele-specific behavior of molecular networks: understanding small-molecule drug response in yeast.
    Zhang F; Gao B; Xu L; Li C; Hao D; Zhang S; Zhou M; Su F; Chen X; Zhi H; Li X
    PLoS One; 2013; 8(1):e53581. PubMed ID: 23308257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic interaction network has a very limited impact on the evolutionary trajectories in continuous culture-grown populations of yeast.
    Klim J; Zielenkiewicz U; Skoneczny M; Skoneczna A; Kurlandzka A; Kaczanowski S
    BMC Ecol Evol; 2021 May; 21(1):99. PubMed ID: 34039270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditional genetic interactions of RTT107, SLX4, and HRQ1 reveal dynamic networks upon DNA damage in S. cerevisiae.
    Leung GP; Aristizabal MJ; Krogan NJ; Kobor MS
    G3 (Bethesda); 2014 Apr; 4(6):1059-69. PubMed ID: 24700328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic reconstruction of a functional transcriptional regulatory network.
    Hu Z; Killion PJ; Iyer VR
    Nat Genet; 2007 May; 39(5):683-7. PubMed ID: 17417638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sir2 links the unfolded protein response and the heat shock response in a stress response network.
    Weindling E; Bar-Nun S
    Biochem Biophys Res Commun; 2015 Feb; 457(3):473-8. PubMed ID: 25600811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks.
    Vohradska E; Vohradsky J
    PLoS One; 2011 Apr; 6(4):e18827. PubMed ID: 21541341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intersecting transcription networks constrain gene regulatory evolution.
    Sorrells TR; Booth LN; Tuch BB; Johnson AD
    Nature; 2015 Jul; 523(7560):361-5. PubMed ID: 26153861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systems-biology approach to modular genetic complexity.
    Carter GW; Rush CG; Uygun F; Sakhanenko NA; Galas DJ; Galitski T
    Chaos; 2010 Jun; 20(2):026102. PubMed ID: 20590331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iSeq: A New Double-Barcode Method for Detecting Dynamic Genetic Interactions in Yeast.
    Jaffe M; Sherlock G; Levy SF
    G3 (Bethesda); 2017 Jan; 7(1):143-153. PubMed ID: 27821633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.