These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31602447)

  • 1. Understanding plasmon coupling in nanoparticle dimers using molecular orbitals and configuration interaction.
    Alkan F; Aikens CM
    Phys Chem Chem Phys; 2019 Oct; 21(41):23065-23075. PubMed ID: 31602447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradual plasmon evolution and huge infrared near-field enhancement of metallic bridged nanoparticle dimers.
    Huang Y; Ma L; Hou M; Xie Z; Zhang Z
    Phys Chem Chem Phys; 2016 Jan; 18(4):2319-23. PubMed ID: 26752002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon resonance analysis with configuration interaction.
    Guidez EB; Aikens CM
    Phys Chem Chem Phys; 2014 Aug; 16(29):15501-9. PubMed ID: 24953630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective multipole oscillations direct the plasmonic coupling at the nanojunction interfaces.
    Hooshmand N; El-Sayed MA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19299-19304. PubMed ID: 31488713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral signatures of charge transfer in assemblies of molecularly-linked plasmonic nanoparticles.
    Lerch S; Reinhard BM
    Int J Mod Phys B; 2017 Sep; 31(24):. PubMed ID: 29391660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New coupling mechanism of titanium nitride nanosphere dimers at short separation distances.
    Cao P; Chen H; Liang M; Dou J; Cheng L
    Nanotechnology; 2019 Aug; 30(33):335204. PubMed ID: 31035275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An asymmetric aluminum active quantum plasmonic device.
    Mokkath JH; Henzie J
    Phys Chem Chem Phys; 2020 Jan; 22(3):1416-1421. PubMed ID: 31859295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers.
    Yang ZJ; Zhang ZS; Zhang LH; Li QQ; Hao ZH; Wang QQ
    Opt Lett; 2011 May; 36(9):1542-4. PubMed ID: 21540921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angle- and energy-resolved plasmon coupling in gold nanorod dimers.
    Shao L; Woo KC; Chen H; Jin Z; Wang J; Lin HQ
    ACS Nano; 2010 Jun; 4(6):3053-62. PubMed ID: 20565141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Coupling between Gold or Silver Nanocubes in Their Homo-Dimers: A New Coupling Mechanism at Short Separation Distances.
    Bordley JA; Hooshmand N; El-Sayed MA
    Nano Lett; 2015 May; 15(5):3391-7. PubMed ID: 25844929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Nanogap Morphology on Plasmon Coupling.
    Kim M; Kwon H; Lee S; Yoon S
    ACS Nano; 2019 Oct; 13(10):12100-12108. PubMed ID: 31584259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study on the transition of plasmonic resonance modes in double-ring dimers by conductive junctions in the terahertz regime.
    Zhang H; Li C; Zhang C; Zhang X; Gu J; Jin B; Han J; Zhang W
    Opt Express; 2016 Nov; 24(24):27415-27422. PubMed ID: 27906313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bonding and Anti-bonding Modes of Plasmon Coupling Effects in TiO2-Ag Core-shell Dimers.
    Li Q; Zhang Z
    Sci Rep; 2016 Jan; 6():19433. PubMed ID: 26763719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers.
    Lerch S; Reinhard BM
    Nat Commun; 2018 Apr; 9(1):1608. PubMed ID: 29686266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers.
    Nome RA; Guffey MJ; Scherer NF; Gray SK
    J Phys Chem A; 2009 Apr; 113(16):4408-15. PubMed ID: 19267445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range correction for tight-binding TD-DFT.
    Humeniuk A; Mitrić R
    J Chem Phys; 2015 Oct; 143(13):134120. PubMed ID: 26450305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TD-DFT and TD-DFTB Investigation of the Optical Properties and Electronic Structure of Silver Nanorods and Nanorod Dimers.
    Alkan F; Aikens CM
    J Phys Chem C Nanomater Interfaces; 2018 Oct; 122(41):23639-23650. PubMed ID: 30364415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What Are the Physical Contents of Hubbard and Heisenberg Hamiltonian Interactions Extracted from Broken Symmetry DFT Calculations in Magnetic Compounds?
    David G; Guihéry N; Ferré N
    J Chem Theory Comput; 2017 Dec; 13(12):6253-6265. PubMed ID: 29039936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.