BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 31602611)

  • 1. Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT.
    Nightingale DJH; Oliver SG; Lilley KS
    Methods Mol Biol; 2019; 2049():165-190. PubMed ID: 31602611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Protocol to Map the Spatial Proteome Using HyperLOPIT in
    Nightingale DJH; Lilley KS; Oliver SG
    Bio Protoc; 2019 Jul; 9(14):e3303. PubMed ID: 33654815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using hyperLOPIT to perform high-resolution mapping of the spatial proteome.
    Mulvey CM; Breckels LM; Geladaki A; Britovšek NK; Nightingale DJH; Christoforou A; Elzek M; Deery MJ; Gatto L; Lilley KS
    Nat Protoc; 2017 Jun; 12(6):1110-1135. PubMed ID: 28471460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics.
    Geladaki A; Kočevar Britovšek N; Breckels LM; Smith TS; Vennard OL; Mulvey CM; Crook OM; Gatto L; Lilley KS
    Nat Commun; 2019 Jan; 10(1):331. PubMed ID: 30659192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The subcellular organisation of Saccharomyces cerevisiae.
    Nightingale DJ; Geladaki A; Breckels LM; Oliver SG; Lilley KS
    Curr Opin Chem Biol; 2019 Feb; 48():86-95. PubMed ID: 30503867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Yeast Peroxisomes via Spatial Proteomics.
    Das H; Zografakis A; Oeljeklaus S; Warscheid B
    Methods Mol Biol; 2023; 2643():13-31. PubMed ID: 36952175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A draft map of the mouse pluripotent stem cell spatial proteome.
    Christoforou A; Mulvey CM; Breckels LM; Geladaki A; Hurrell T; Hayward PC; Naake T; Gatto L; Viner R; Martinez Arias A; Lilley KS
    Nat Commun; 2016 Jan; 7():8992. PubMed ID: 26754106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localizing the proteome.
    Simpson JC; Pepperkok R
    Genome Biol; 2003; 4(12):240. PubMed ID: 14659010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses.
    Breker M; Gymrek M; Schuldiner M
    J Cell Biol; 2013 Mar; 200(6):839-50. PubMed ID: 23509072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass-Spectrometry-Based Near-Complete Draft of the
    Gao Y; Ping L; Duong D; Zhang C; Dammer EB; Li Y; Chen P; Chang L; Gao H; Wu J; Xu P
    J Proteome Res; 2021 Feb; 20(2):1328-1340. PubMed ID: 33443437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Playing tag with the yeast proteome.
    Andrews BJ; Bader GD; Boone C
    Nat Biotechnol; 2003 Nov; 21(11):1297-9. PubMed ID: 14595360
    [No Abstract]   [Full Text] [Related]  

  • 12. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome.
    Grillitsch K; Connerth M; Köfeler H; Arrey TN; Rietschel B; Wagner B; Karas M; Daum G
    Biochim Biophys Acta; 2011 Dec; 1811(12):1165-76. PubMed ID: 21820081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the Saccharomyces cerevisiae proteome with PeptideAtlas.
    King NL; Deutsch EW; Ranish JA; Nesvizhskii AI; Eddes JS; Mallick P; Eng J; Desiere F; Flory M; Martin DB; Kim B; Lee H; Raught B; Aebersold R
    Genome Biol; 2006; 7(11):R106. PubMed ID: 17101051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome-wide screens in Saccharomyces cerevisiae using the yeast GFP collection.
    Chong YT; Cox MJ; Andrews B
    Adv Exp Med Biol; 2012; 736():169-78. PubMed ID: 22161327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution enabled 12-plex DiLeu isobaric tags for quantitative proteomics.
    Frost DC; Greer T; Li L
    Anal Chem; 2015 Feb; 87(3):1646-54. PubMed ID: 25405479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome survey reveals modularity of the yeast cell machinery.
    Gavin AC; Aloy P; Grandi P; Krause R; Boesche M; Marzioch M; Rau C; Jensen LJ; Bastuck S; Dümpelfeld B; Edelmann A; Heurtier MA; Hoffman V; Hoefert C; Klein K; Hudak M; Michon AM; Schelder M; Schirle M; Remor M; Rudi T; Hooper S; Bauer A; Bouwmeester T; Casari G; Drewes G; Neubauer G; Rick JM; Kuster B; Bork P; Russell RB; Superti-Furga G
    Nature; 2006 Mar; 440(7084):631-6. PubMed ID: 16429126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical Guidelines for co-fractionation Mass Spectrometry Obtained through Global Profiling of Gold Standard
    Pang CNI; Ballouz S; Weissberger D; Thibaut LM; Hamey JJ; Gillis J; Wilkins MR; Hart-Smith G
    Mol Cell Proteomics; 2020 Nov; 19(11):1876-1895. PubMed ID: 32817346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplexed proteome profiling of carbon source perturbations in two yeast species with SL-SP3-TMT.
    Paulo JA; Navarrete-Perea J; Gygi SP
    J Proteomics; 2020 Jan; 210():103531. PubMed ID: 31626996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation.
    Levy ED; Kowarzyk J; Michnick SW
    Cell Rep; 2014 May; 7(4):1333-40. PubMed ID: 24813894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of phosphoproteome regulation by the Ser/Thr phosphatase Ppt1 in Saccharomyces cerevisiae.
    Schreiber TB; Mäusbacher N; Soroka J; Wandinger SK; Buchner J; Daub H
    J Proteome Res; 2012 Apr; 11(4):2397-408. PubMed ID: 22369663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.