BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31602616)

  • 1. Measuring the Activity of Plasma Membrane and Vacuolar Transporters in Yeast.
    Cools M; Rompf M; Mayer A; André B
    Methods Mol Biol; 2019; 2049():247-261. PubMed ID: 31602616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of Amino Acids across the Vacuolar Membrane of Yeast: Its Mechanism and Physiological Role.
    Kawano-Kawada M; Kakinuma Y; Sekito T
    Biol Pharm Bull; 2018; 41(10):1496-1501. PubMed ID: 30270317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A family of yeast proteins mediating bidirectional vacuolar amino acid transport.
    Russnak R; Konczal D; McIntire SL
    J Biol Chem; 2001 Jun; 276(26):23849-57. PubMed ID: 11274162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water transport across yeast vacuolar and plasma membrane-targeted secretory vesicles occurs by passive diffusion.
    Coury LA; Hiller M; Mathai JC; Jones EW; Zeidel ML; Brodsky JL
    J Bacteriol; 1999 Jul; 181(14):4437-40. PubMed ID: 10400607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ssh4, Rcr2 and Rcr1 affect plasma membrane transporter activity in Saccharomyces cerevisiae.
    Kota J; Melin-Larsson M; Ljungdahl PO; Forsberg H
    Genetics; 2007 Apr; 175(4):1681-94. PubMed ID: 17287526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+) homeostasis in the budding yeast Saccharomyces cerevisiae: Impact of ER/Golgi Ca(2+) storage.
    D'hooge P; Coun C; Van Eyck V; Faes L; Ghillebert R; Mariën L; Winderickx J; Callewaert G
    Cell Calcium; 2015 Aug; 58(2):226-35. PubMed ID: 26055636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae.
    MacDiarmid CW; Milanick MA; Eide DJ
    J Biol Chem; 2002 Oct; 277(42):39187-94. PubMed ID: 12161436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ygr125w/Vsb1-dependent accumulation of basic amino acids into vacuoles of Saccharomyces cerevisiae.
    Kawano-Kawada M; Ichimura H; Ohnishi S; Yamamoto Y; Kawasaki Y; Sekito T
    Biosci Biotechnol Biochem; 2021 Apr; 85(5):1157-1164. PubMed ID: 33704406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and function of the yeast multidrug transporter Tpo1p.
    Albertsen M; Bellahn I; Krämer R; Waffenschmidt S
    J Biol Chem; 2003 Apr; 278(15):12820-5. PubMed ID: 12562762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuolar import of phosphatidylcholine requires the ATP-binding cassette transporter Ybt1.
    Gulshan K; Moye-Rowley WS
    Traffic; 2011 Sep; 12(9):1257-68. PubMed ID: 21649806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the Plasma Membrane Proteome Dynamics Reveals Novel Targets of the Nitrogen Regulation in Yeast.
    Villers J; Savocco J; Szopinska A; Degand H; Nootens S; Morsomme P
    Mol Cell Proteomics; 2017 Sep; 16(9):1652-1668. PubMed ID: 28679684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione.
    Mehdi K; Thierie J; Penninckx MJ
    Biochem J; 2001 Nov; 359(Pt 3):631-7. PubMed ID: 11672438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen coordinated import and export of arginine across the yeast vacuolar membrane.
    Cools M; Lissoir S; Bodo E; Ulloa-Calzonzin J; DeLuna A; Georis I; André B
    PLoS Genet; 2020 Aug; 16(8):e1008966. PubMed ID: 32776922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium and sulfate ion transport in yeast vacuoles.
    Hirata T; Wada Y; Futai M
    J Biochem; 2002 Feb; 131(2):261-5. PubMed ID: 11820941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacuolar transporter Avt4 is involved in excretion of basic amino acids from the vacuoles of Saccharomyces cerevisiae.
    Sekito T; Chardwiriyapreecha S; Sugimoto N; Ishimoto M; Kawano-Kawada M; Kakinuma Y
    Biosci Biotechnol Biochem; 2014; 78(6):969-75. PubMed ID: 25036121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A vacuolar membrane protein Avt7p is involved in transport of amino acid and spore formation in Saccharomyces cerevisiae.
    Tone J; Yamanaka A; Manabe K; Murao N; Kawano-Kawada M; Sekito T; Kakinuma Y
    Biosci Biotechnol Biochem; 2015; 79(2):190-5. PubMed ID: 25266154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic instability and constitutive endocytosis of STE6, the a-factor transporter of Saccharomyces cerevisiae.
    Berkower C; Loayza D; Michaelis S
    Mol Biol Cell; 1994 Nov; 5(11):1185-98. PubMed ID: 7865884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of acid trehalase (ATH) on impaired yeast vacuolar activity.
    Tran LM; Bang SH; Yoon J; Kim YH; Min J
    Enzyme Microb Technol; 2016 Nov; 93-94():44-50. PubMed ID: 27702484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The yeast vacuolar membrane proteome.
    Wiederhold E; Gandhi T; Permentier HP; Breitling R; Poolman B; Slotboom DJ
    Mol Cell Proteomics; 2009 Feb; 8(2):380-92. PubMed ID: 19001347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of ATP-dependent lysine uptake in the vacuolar membrane vesicles of Saccharomyces cerevisiae ypq1∆ mutant.
    Sekito T; Nakamura K; Manabe K; Tone J; Sato Y; Murao N; Kawano-Kawada M; Kakinuma Y
    Biosci Biotechnol Biochem; 2014; 78(7):1199-202. PubMed ID: 25229858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.