These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 31602972)

  • 1. Sustainable Low-Temperature Hydrogen Production from Lignocellulosic Biomass Passing through Formic Acid: Combination of Biomass Hydrolysis/Oxidation and Formic Acid Dehydrogenation.
    Park JH; Jin MH; Lee DW; Lee YJ; Song GS; Park SJ; Namkung H; Song KH; Choi YC
    Environ Sci Technol; 2019 Dec; 53(23):14041-14053. PubMed ID: 31602972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Sustainable Production of Formic Acid.
    Bulushev DA; Ross JRH
    ChemSusChem; 2018 Mar; 11(5):821-836. PubMed ID: 29316342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delignification of Pinecone and Extraction of Formic Acid in the Hydrolysate Produced by Alkaline Fractionation.
    Cha JS; Um BH
    Appl Biochem Biotechnol; 2020 Sep; 192(1):103-119. PubMed ID: 32270381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignocellulosic Biomass: A Sustainable Bioenergy Source for the Future.
    Fatma S; Hameed A; Noman M; Ahmed T; Shahid M; Tariq M; Sohail I; Tabassum R
    Protein Pept Lett; 2018; 25(2):148-163. PubMed ID: 29359659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in production of succinic acid from lignocellulosic biomass.
    Akhtar J; Idris A; Abd Aziz R
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):987-1000. PubMed ID: 24292125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of hydrogen peroxide concentration and solid loading on the fractionation of biomass in formic acid.
    Dussan K; Girisuta B; Haverty D; Leahy JJ; Hayes MH
    Carbohydr Polym; 2014 Oct; 111():374-84. PubMed ID: 25037364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of hydrothermal pretreatment of lignocellulosic biomass in the bioethanol production process.
    Nitsos CK; Matis KA; Triantafyllidis KS
    ChemSusChem; 2013 Jan; 6(1):110-22. PubMed ID: 23180649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective oxidation of lignocellulosic biomass to formic acid and high-grade cellulose using tailor-made polyoxometalate catalysts.
    Albert J
    Faraday Discuss; 2017 Sep; 202():99-109. PubMed ID: 28653734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formic-acid-induced depolymerization of oxidized lignin to aromatics.
    Rahimi A; Ulbrich A; Coon JJ; Stahl SS
    Nature; 2014 Nov; 515(7526):249-52. PubMed ID: 25363781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromic hydroxide-decorated palladium nanoparticles confined by amine-functionalized mesoporous silica for rapid dehydrogenation of formic acid.
    Ding Y; Peng W; Zhang L; Xia J; Feng G; Lu ZH
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):879-887. PubMed ID: 36306599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential lignin depolymerization by combination of biocatalytic and formic acid/formate treatment steps.
    Gasser CA; Čvančarová M; Ammann EM; Schäffer A; Shahgaldian P; Corvini PF
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2575-2588. PubMed ID: 27904924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the Role of Formic Acid and the Type of Solvent in the Catalytic Conversion of Lignin: A Holistic Approach.
    Oregui-Bengoechea M; Gandarias I; Arias PL; Barth T
    ChemSusChem; 2017 Feb; 10(4):754-766. PubMed ID: 27925410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formic acid aided hot water extraction of hemicellulose from European silver birch (Betula pendula) sawdust.
    Goldmann WM; Ahola J; Mikola M; Tanskanen J
    Bioresour Technol; 2017 May; 232():176-182. PubMed ID: 28231535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the reactor wall in hydrothermal biomass conversions.
    Fábos V; Yuen AK; Masters AF; Maschmeyer T
    Chem Asian J; 2012 Nov; 7(11):2638-43. PubMed ID: 22952025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective depolymerization of concentrated acid hydrolysis lignin using a carbon-supported ruthenium catalyst in ethanol/formic acid media.
    Kristianto I; Limarta SO; Lee H; Ha JM; Suh DJ; Jae J
    Bioresour Technol; 2017 Jun; 234():424-431. PubMed ID: 28347962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Fractionation of Cornstalk into Noncondensed Lignin, Xylose, and Cellulose in Formic Acid.
    Xie X; Li C; Fan D; Zhong J; Liu Q; Qiu X; Ouyang X
    J Agric Food Chem; 2022 Dec; 70(49):15430-15438. PubMed ID: 36458728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pretreatment of Lignocellulosic Biomass with Low-cost Ionic Liquids.
    Gschwend FJ; Brandt A; Chambon CL; Tu WC; Weigand L; Hallett JP
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27583830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights.
    Ren NQ; Zhao L; Chen C; Guo WQ; Cao GL
    Bioresour Technol; 2016 Sep; 215():92-99. PubMed ID: 27090403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corn stover valorization by one-step formic acid fractionation and formylation for 5-hydroxymethylfurfural and high guaiacyl lignin production.
    Jin C; Yang M; E S; Liu J; Zhang S; Zhang X; Sheng K; Zhang X
    Bioresour Technol; 2020 Mar; 299():122586. PubMed ID: 31865154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.