BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 31603229)

  • 1. Skeletal muscle wasting in chronic kidney disease: the emerging role of microRNAs.
    Robinson KA; Baker LA; Graham-Brown MPM; Watson EL
    Nephrol Dial Transplant; 2020 Sep; 35(9):1469-1478. PubMed ID: 31603229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organ Crosstalk Contributes to Muscle Wasting in Chronic Kidney Disease.
    Wang XH; Price SR
    Semin Nephrol; 2023 Mar; 43(2):151409. PubMed ID: 37611335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs.
    Solagna F; Tezze C; Lindenmeyer MT; Lu S; Wu G; Liu S; Zhao Y; Mitchell R; Meyer C; Omairi S; Kilic T; Paolini A; Ritvos O; Pasternack A; Matsakas A; Kylies D; Wiesch JSZ; Turner JE; Wanner N; Nair V; Eichinger F; Menon R; Martin IV; Klinkhammer BM; Hoxha E; Cohen CD; Tharaux PL; Boor P; Ostendorf T; Kretzler M; Sandri M; Kretz O; Puelles VG; Patel K; Huber TB
    J Clin Invest; 2021 Jun; 131(11):. PubMed ID: 34060483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of muscle wasting in chronic kidney disease.
    Wang XH; Mitch WE
    Nat Rev Nephrol; 2014 Sep; 10(9):504-16. PubMed ID: 24981816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Skeletal Muscle Atrophy in Cachexia by MicroRNAs and Long Non-coding RNAs.
    Chen R; Lei S; Jiang T; She Y; Shi H
    Front Cell Dev Biol; 2020; 8():577010. PubMed ID: 33043011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs: a new therapeutic frontier for muscle wasting in chronic kidney disease.
    Mak RH; Cheung WW
    Kidney Int; 2012 Aug; 82(4):373-4. PubMed ID: 22846810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of muscle wasting by the plant-derived compound ursolic acid in a model of chronic kidney disease.
    Yu R; Chen JA; Xu J; Cao J; Wang Y; Thomas SS; Hu Z
    J Cachexia Sarcopenia Muscle; 2017 Apr; 8(2):327-341. PubMed ID: 27897418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions.
    Soares RJ; Cagnin S; Chemello F; Silvestrin M; Musaro A; De Pitta C; Lanfranchi G; Sandri M
    J Biol Chem; 2014 Aug; 289(32):21909-25. PubMed ID: 24891504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle Wasting in Chronic Kidney Disease: Mechanism and Clinical Implications-A Narrative Review.
    Cheng TC; Huang SH; Kao CL; Hsu PC
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle wasting from kidney failure-a model for catabolic conditions.
    Wang XH; Mitch WE
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2230-8. PubMed ID: 23872437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathophysiological mechanisms leading to muscle loss in chronic kidney disease.
    Wang XH; Mitch WE; Price SR
    Nat Rev Nephrol; 2022 Mar; 18(3):138-152. PubMed ID: 34750550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miRNA-23a/27a attenuates muscle atrophy and renal fibrosis through muscle-kidney crosstalk.
    Zhang A; Li M; Wang B; Klein JD; Price SR; Wang XH
    J Cachexia Sarcopenia Muscle; 2018 Aug; 9(4):755-770. PubMed ID: 29582582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA Dysregulation in Aging and Pathologies of the Skeletal Muscle.
    McCormick R; Goljanek-Whysall K
    Int Rev Cell Mol Biol; 2017; 334():265-308. PubMed ID: 28838540
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Wang B; Zhang A; Wang H; Klein JD; Tan L; Wang ZM; Du J; Naqvi N; Liu BC; Wang XH
    Theranostics; 2019; 9(7):1864-1877. PubMed ID: 31037144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irisin Ameliorated Skeletal Muscle Atrophy by Inhibiting Fatty Acid Oxidation and Pyroptosis Induced by Palmitic Acid in Chronic Kidney Disease.
    Zhou T; Wang S; Pan Y; Dong X; Wu L; Meng J; Zhang J; Pang Q; Zhang A
    Kidney Blood Press Res; 2023; 48(1):628-641. PubMed ID: 37717561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced skeletal muscle function is associated with decreased fiber cross-sectional area in the Cy/+ rat model of progressive kidney disease.
    Organ JM; Srisuwananukorn A; Price P; Joll JE; Biro KC; Rupert JE; Chen NX; Avin KG; Moe SM; Allen MR
    Nephrol Dial Transplant; 2016 Feb; 31(2):223-30. PubMed ID: 26442903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size.
    Lee DE; Brown JL; Rosa-Caldwell ME; Blackwell TA; Perry RA; Brown LA; Khatri B; Seo D; Bottje WG; Washington TA; Wiggs MP; Kong BW; Greene NP
    Physiol Genomics; 2017 May; 49(5):253-260. PubMed ID: 28341621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA in skeletal muscle development, growth, atrophy, and disease.
    Kovanda A; Režen T; Rogelj B
    Wiley Interdiscip Rev RNA; 2014; 5(4):509-25. PubMed ID: 24838768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle atrophy in clinical and preclinical models of chronic kidney disease: A systematic review and meta-analysis.
    Troutman AD; Arroyo E; Sheridan EM; D'Amico DJ; Brandt PR; Hinrichs R; Chen X; Lim K; Avin KG
    J Cachexia Sarcopenia Muscle; 2024 Feb; 15(1):21-35. PubMed ID: 38062879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate stimulates myotube atrophy through autophagy activation: evidence of hyperphosphatemia contributing to skeletal muscle wasting in chronic kidney disease.
    Zhang YY; Yang M; Bao JF; Gu LJ; Yu HL; Yuan WJ
    BMC Nephrol; 2018 Feb; 19(1):45. PubMed ID: 29486729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.