These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 31603270)

  • 1. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells.
    Ai Y; Xie R; Xiong J; Liang Q
    Small; 2020 Mar; 16(9):e1903940. PubMed ID: 31603270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances of droplet-based microfluidics for engineering artificial cells.
    Fasciano S; Wang S
    SLAS Technol; 2024 Apr; 29(2):100090. PubMed ID: 37245659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vesicle-based artificial cells: materials, construction methods and applications.
    Lu Y; Allegri G; Huskens J
    Mater Horiz; 2022 Mar; 9(3):892-907. PubMed ID: 34908080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of membrane-bound artificial cells using microfluidics: a new frontier in bottom-up synthetic biology.
    Elani Y
    Biochem Soc Trans; 2016 Jun; 44(3):723-30. PubMed ID: 27284034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Directions for Artificial Cells Using Prototyped Biosystems.
    Friddin MS; Elani Y; Trantidou T; Ces O
    Anal Chem; 2019 Apr; 91(8):4921-4928. PubMed ID: 30841694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically activated artificial cell by using microfluidics.
    Ho KK; Lee LM; Liu AP
    Sci Rep; 2016 Sep; 6():32912. PubMed ID: 27610921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Handling and Analysis of Giant Vesicles for Use as Artificial Cells: A Review.
    Robinson T
    Adv Biosyst; 2019 Jun; 3(6):e1800318. PubMed ID: 32648705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial microfluidic droplet engineering for biomimetic material synthesis.
    Bawazer LA; McNally CS; Empson CJ; Marchant WJ; Comyn TP; Niu X; Cho S; McPherson MJ; Binks BP; deMello A; Meldrum FC
    Sci Adv; 2016 Oct; 2(10):e1600567. PubMed ID: 27730209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices.
    Ayoubi-Joshaghani MH; Dianat-Moghadam H; Seidi K; Jahanban-Esfahalan A; Zare P; Jahanban-Esfahlan R
    Biotechnol Bioeng; 2020 Apr; 117(4):1204-1229. PubMed ID: 31840797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent methods of droplet microfluidics and their applications in spheroids and organoids.
    Wang Y; Liu M; Zhang Y; Liu H; Han L
    Lab Chip; 2023 Mar; 23(5):1080-1096. PubMed ID: 36628972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet microfluidics for synthetic biology.
    Gach PC; Iwai K; Kim PW; Hillson NJ; Singh AK
    Lab Chip; 2017 Oct; 17(20):3388-3400. PubMed ID: 28820204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic Cells from Droplet-Based Microfluidics for Biosensing and Biomedical Applications.
    Ngocho K; Yang X; Wang Z; Hu C; Yang X; Shi H; Wang K; Liu J
    Small; 2024 Apr; ():e2400086. PubMed ID: 38563581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface behaviors of droplet manipulation in microfluidics devices.
    Wu L; Guo Z; Liu W
    Adv Colloid Interface Sci; 2022 Oct; 308():102770. PubMed ID: 36113310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials and methods for droplet microfluidic device fabrication.
    Elvira KS; Gielen F; Tsai SSH; Nightingale AM
    Lab Chip; 2022 Mar; 22(5):859-875. PubMed ID: 35170611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous magnetic droplets and microfluidics: generation, manipulation, synthesis and detection.
    Al-Hetlani E; Amin MO
    Mikrochim Acta; 2019 Jan; 186(2):55. PubMed ID: 30617420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bottom-Up Assembly of Functional Intracellular Synthetic Organelles by Droplet-Based Microfluidics.
    Staufer O; Schröter M; Platzman I; Spatz JP
    Small; 2020 Jul; 16(27):e1906424. PubMed ID: 32078238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printhead on a chip: empowering droplet-based bioprinting with microfluidics.
    Zhang P; Liu C; Modavi C; Abate A; Chen H
    Trends Biotechnol; 2024 Mar; 42(3):353-368. PubMed ID: 37777352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing droplet transition capabilities using sloped microfluidic channel geometry for stable droplet operation.
    Wippold JA; Huang C; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Jan; 22(1):15. PubMed ID: 31965327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic manipulation with artificial/bioinspired cilia.
    den Toonder JM; Onck PR
    Trends Biotechnol; 2013 Feb; 31(2):85-91. PubMed ID: 23245658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.