These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31603395)

  • 21. Effects of Wearable Powered Exoskeletal Training on Functional Mobility, Physiological Health and Quality of Life in Non-ambulatory Spinal Cord Injury Patients.
    Kim HS; Park JH; Lee HS; Lee JY; Jung JW; Park SB; Hyun DJ; Park S; Yoon J; Lim H; Choi YY; Kim MJ
    J Korean Med Sci; 2021 Mar; 36(12):e80. PubMed ID: 33783145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches.
    Smith AJJ; Fournier BN; Nantel J; Lemaire ED
    J Biomech; 2020 Jun; 107():109835. PubMed ID: 32517865
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics.
    Bach Baunsgaard C; Vig Nissen U; Katrin Brust A; Frotzler A; Ribeill C; Kalke YB; León N; Gómez B; Samuelsson K; Antepohl W; Holmström U; Marklund N; Glott T; Opheim A; Benito J; Murillo N; Nachtegaal J; Faber W; Biering-Sørensen F
    Spinal Cord; 2018 Feb; 56(2):106-116. PubMed ID: 29105657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combining robotic exoskeleton and body weight unweighing technology to promote walking activity in tetraplegia following SCI: A case study.
    Chang SH; Zhu F; Patel N; Afzal T; Kern M; Francisco GE
    J Spinal Cord Med; 2020 Jan; 43(1):126-129. PubMed ID: 30335593
    [No Abstract]   [Full Text] [Related]  

  • 26. Walking with a powered robotic exoskeleton: Subjective experience, spasticity and pain in spinal cord injured persons.
    Stampacchia G; Rustici A; Bigazzi S; Gerini A; Tombini T; Mazzoleni S
    NeuroRehabilitation; 2016 Jun; 39(2):277-83. PubMed ID: 27372363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exoskeleton-assisted walking improves pulmonary function and walking parameters among individuals with spinal cord injury: a randomized controlled pilot study.
    Xiang XN; Zong HY; Ou Y; Yu X; Cheng H; Du CP; He HC
    J Neuroeng Rehabil; 2021 May; 18(1):86. PubMed ID: 34030720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study.
    Benson I; Hart K; Tussler D; van Middendorp JJ
    Clin Rehabil; 2016 Jan; 30(1):73-84. PubMed ID: 25761635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retraining walking over ground in a powered exoskeleton after spinal cord injury: a prospective cohort study to examine functional gains and neuroplasticity.
    Khan AS; Livingstone DC; Hurd CL; Duchcherer J; Misiaszek JE; Gorassini MA; Manns PJ; Yang JF
    J Neuroeng Rehabil; 2019 Nov; 16(1):145. PubMed ID: 31752911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton.
    Hartigan C; Kandilakis C; Dalley S; Clausen M; Wilson E; Morrison S; Etheridge S; Farris R
    Top Spinal Cord Inj Rehabil; 2015; 21(2):93-9. PubMed ID: 26364278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting Duration of Outpatient Physical Therapy Episodes for Individuals with Spinal Cord Injury Based on Locomotor Training Strategy.
    Garnier-Villarreal M; Pinto D; Mummidisetty CK; Jayaraman A; Tefertiller C; Charlifue S; Taylor HB; Chang SH; McCombs N; Furbish CL; Field-Fote EC; Heinemann AW
    Arch Phys Med Rehabil; 2022 Apr; 103(4):665-675. PubMed ID: 34648804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Exoskeletal-Assisted Walking on Soft Tissue Body Composition in Persons With Spinal Cord Injury.
    Asselin P; Cirnigliaro CM; Kornfeld S; Knezevic S; Lackow R; Elliott M; Bauman WA; Spungen AM
    Arch Phys Med Rehabil; 2021 Feb; 102(2):196-202. PubMed ID: 33171129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility of integrating robotic exoskeleton gait training in inpatient rehabilitation.
    Swank C; Sikka S; Driver S; Bennett M; Callender L
    Disabil Rehabil Assist Technol; 2020 May; 15(4):409-417. PubMed ID: 30887864
    [No Abstract]   [Full Text] [Related]  

  • 35. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial.
    Edwards DJ; Forrest G; Cortes M; Weightman MM; Sadowsky C; Chang SH; Furman K; Bialek A; Prokup S; Carlow J; VanHiel L; Kemp L; Musick D; Campo M; Jayaraman A
    Spinal Cord; 2022 Jun; 60(6):522-532. PubMed ID: 35094007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exoskeleton-based training improves walking independence in incomplete spinal cord injury patients: results from a randomized controlled trial.
    Gil-Agudo Á; Megía-García Á; Pons JL; Sinovas-Alonso I; Comino-Suárez N; Lozano-Berrio V; Del-Ama AJ
    J Neuroeng Rehabil; 2023 Mar; 20(1):36. PubMed ID: 36964574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Foundational ingredients of robotic gait training for people with incomplete spinal cord injury during inpatient rehabilitation (FIRST): A randomized controlled trial protocol.
    Swank C; Holden A; McDonald L; Driver S; Callender L; Bennett M; Sikka S
    PLoS One; 2022; 17(5):e0267013. PubMed ID: 35536844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury.
    Yang A; Asselin P; Knezevic S; Kornfeld S; Spungen AM
    Top Spinal Cord Inj Rehabil; 2015; 21(2):100-9. PubMed ID: 26364279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exoskeleton use in acute rehabilitation post spinal cord injury: A qualitative study exploring patients' experiences.
    Charbonneau R; Loyola-Sanchez A; McIntosh K; MacKean G; Ho C
    J Spinal Cord Med; 2022 Nov; 45(6):848-856. PubMed ID: 34855574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highest ambulatory speed using Lokomat gait training for individuals with a motor-complete spinal cord injury: a clinical pilot study.
    van Silfhout L; Váňa Z; Pĕtioký J; Edwards MJR; Bartels RHMA; van de Meent H; Hosman AJF
    Acta Neurochir (Wien); 2020 Apr; 162(4):951-956. PubMed ID: 31873795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.